File size: 13,270 Bytes
36d4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
---
title: Whisper Live Kit
emoji: ๐Ÿณ
colorFrom: purple
colorTo: gray
sdk: docker
app_port: 7860
---

<h1 align="center">WhisperLiveKit</h1>

<p align="center">
<img src="https://raw.githubusercontent.com/QuentinFuxa/WhisperLiveKit/refs/heads/main/demo.png" alt="WhisperLiveKit Demo" width="730">
</p>

<p align="center"><b>Real-time, Fully Local Speech-to-Text with Speaker Diarization</b></p>

<p align="center">
<a href="https://pypi.org/project/whisperlivekit/"><img alt="PyPI Version" src="https://img.shields.io/pypi/v/whisperlivekit?color=g"></a>
<a href="https://pepy.tech/project/whisperlivekit"><img alt="PyPI Downloads" src="https://static.pepy.tech/personalized-badge/whisperlivekit?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=downloads"></a>
<a href="https://pypi.org/project/whisperlivekit/"><img alt="Python Versions" src="https://img.shields.io/badge/python-3.9--3.13-dark_green"></a>
<a href="https://github.com/QuentinFuxa/WhisperLiveKit/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/badge/License-MIT/Dual Licensed-dark_green"></a>
</p>


WhisperLiveKit brings real-time speech transcription directly to your browser, with a ready-to-use backend+server and a simple frontend. โœจ

Built on [SimulStreaming](https://github.com/ufal/SimulStreaming) (SOTA 2025) and [WhisperStreaming](https://github.com/ufal/whisper_streaming) (SOTA 2023) for transcription, plus [Streaming Sortformer](https://arxiv.org/abs/2507.18446) (SOTA 2025) and [Diart](https://github.com/juanmc2005/diart) (SOTA 2021) for diarization.


### Key Features

- **Real-time Transcription** - Locally (or on-prem) convert speech to text instantly as you speak
- **Speaker Diarization** - Identify different speakers in real-time. (โš ๏ธ backend Streaming Sortformer in developement)
- **Multi-User Support** - Handle multiple users simultaneously with a single backend/server
- **Automatic Silence Chunking** โ€“ Automatically chunks when no audio is detected to limit buffer size
- **Confidence Validation** โ€“ Immediately validate high-confidence tokens for faster inference (WhisperStreaming only)
- **Buffering Preview** โ€“ Displays unvalidated transcription segments (not compatible with SimulStreaming yet)
- **Punctuation-Based Speaker Splitting [BETA]** - Align speaker changes with natural sentence boundaries for more readable transcripts
- **SimulStreaming Backend** - [Dual-licensed](https://github.com/ufal/SimulStreaming#-licence-and-contributions) - Ultra-low latency transcription using SOTA AlignAtt policy. 

### Architecture

<img alt="Architecture" src="architecture.png" />


## Quick Start

```bash
# Install the package
pip install whisperlivekit

# Start the transcription server
whisperlivekit-server --model tiny.en

# Open your browser at http://localhost:8000 to see the interface.
# Use  -ssl-certfile public.crt --ssl-keyfile private.key parameters to use SSL
```

That's it! Start speaking and watch your words appear on screen.

## Installation

```bash
#Install from PyPI (Recommended)
pip install whisperlivekit

#Install from Source
git clone https://github.com/QuentinFuxa/WhisperLiveKit
cd WhisperLiveKit
pip install -e .
```

### FFmpeg Dependency

```bash
# Ubuntu/Debian
sudo apt install ffmpeg

# macOS
brew install ffmpeg

# Windows
# Download from https://ffmpeg.org/download.html and add to PATH
```

### Optional Dependencies

```bash
# Voice Activity Controller (prevents hallucinations)
pip install torch

# Sentence-based buffer trimming
pip install mosestokenizer wtpsplit
pip install tokenize_uk  # If you work with Ukrainian text

# Speaker diarization
pip install diart

# Alternative Whisper backends (default is faster-whisper)
pip install whisperlivekit[whisper]              # Original Whisper
pip install whisperlivekit[whisper-timestamped]  # Improved timestamps
pip install whisperlivekit[mlx-whisper]          # Apple Silicon optimization
pip install whisperlivekit[openai]               # OpenAI API
pip install whisperlivekit[simulstreaming]
```

### ๐ŸŽน Pyannote Models Setup

For diarization, you need access to pyannote.audio models:

1. [Accept user conditions](https://huggingface.co/pyannote/segmentation) for the `pyannote/segmentation` model
2. [Accept user conditions](https://huggingface.co/pyannote/segmentation-3.0) for the `pyannote/segmentation-3.0` model
3. [Accept user conditions](https://huggingface.co/pyannote/embedding) for the `pyannote/embedding` model
4. Login with HuggingFace:
```bash
pip install huggingface_hub
huggingface-cli login
```

## ๐Ÿ’ป Usage Examples

### Command-line Interface

Start the transcription server with various options:

```bash
# Basic server with English model
whisperlivekit-server --model tiny.en

# Advanced configuration with diarization
whisperlivekit-server --host 0.0.0.0 --port 8000 --model medium --diarization --language auto

# SimulStreaming backend for ultra-low latency
whisperlivekit-server --backend simulstreaming --model large-v3 --frame-threshold 20
```


### Python API Integration (Backend)
Check [basic_server.py](https://github.com/QuentinFuxa/WhisperLiveKit/blob/main/whisperlivekit/basic_server.py) for a complete example.

```python
from whisperlivekit import TranscriptionEngine, AudioProcessor, parse_args
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from contextlib import asynccontextmanager
import asyncio

transcription_engine = None

@asynccontextmanager
async def lifespan(app: FastAPI):
    global transcription_engine
    transcription_engine = TranscriptionEngine(model="medium", diarization=True, lan="en")
    # You can also load from command-line arguments using parse_args()
    # args = parse_args()
    # transcription_engine = TranscriptionEngine(**vars(args))
    yield

app = FastAPI(lifespan=lifespan)

# Process WebSocket connections
async def handle_websocket_results(websocket: WebSocket, results_generator):
    async for response in results_generator:
        await websocket.send_json(response)
    await websocket.send_json({"type": "ready_to_stop"})

@app.websocket("/asr")
async def websocket_endpoint(websocket: WebSocket):
    global transcription_engine

    # Create a new AudioProcessor for each connection, passing the shared engine
    audio_processor = AudioProcessor(transcription_engine=transcription_engine)    
    results_generator = await audio_processor.create_tasks()
    results_task = asyncio.create_task(handle_websocket_results(websocket, results_generator))
    await websocket.accept()
    while True:
        message = await websocket.receive_bytes()
        await audio_processor.process_audio(message)        
```

### Frontend Implementation

The package includes a simple HTML/JavaScript implementation that you can adapt for your project. You can find it [here](https://github.com/QuentinFuxa/WhisperLiveKit/blob/main/whisperlivekit/web/live_transcription.html), or load its content using `get_web_interface_html()` :

```python
from whisperlivekit import get_web_interface_html
html_content = get_web_interface_html()
```

## โš™๏ธ Configuration Reference

WhisperLiveKit offers extensive configuration options:

| Parameter | Description | Default |
|-----------|-------------|---------|
| `--host` | Server host address | `localhost` |
| `--port` | Server port | `8000` |
| `--model` | Whisper model size. Caution : '.en' models do not work with Simulstreaming | `tiny` |
| `--language` | Source language code or `auto` | `en` |
| `--task` | `transcribe` or `translate` | `transcribe` |
| `--backend` | Processing backend | `faster-whisper` |
| `--diarization` | Enable speaker identification | `False` |
| `--punctuation-split` | Use punctuation to improve speaker boundaries | `True` |
| `--confidence-validation` | Use confidence scores for faster validation | `False` |
| `--min-chunk-size` | Minimum audio chunk size (seconds) | `1.0` |
| `--vac` | Use Voice Activity Controller | `False` |
| `--no-vad` | Disable Voice Activity Detection | `False` |
| `--buffer_trimming` | Buffer trimming strategy (`sentence` or `segment`) | `segment` |
| `--warmup-file` | Audio file path for model warmup | `jfk.wav` |
| `--ssl-certfile` | Path to the SSL certificate file (for HTTPS support) | `None` |
| `--ssl-keyfile` | Path to the SSL private key file (for HTTPS support) | `None` |
| `--segmentation-model` | Hugging Face model ID for pyannote.audio segmentation model. [Available models](https://github.com/juanmc2005/diart/tree/main?tab=readme-ov-file#pre-trained-models) | `pyannote/segmentation-3.0` |
| `--embedding-model` | Hugging Face model ID for pyannote.audio embedding model. [Available models](https://github.com/juanmc2005/diart/tree/main?tab=readme-ov-file#pre-trained-models) | `speechbrain/spkrec-ecapa-voxceleb` |

**SimulStreaming-specific Options:**

| Parameter | Description | Default |
|-----------|-------------|---------|
| `--frame-threshold` | AlignAtt frame threshold (lower = faster, higher = more accurate) | `25` |
| `--beams` | Number of beams for beam search (1 = greedy decoding) | `1` |
| `--decoder` | Force decoder type (`beam` or `greedy`) | `auto` |
| `--audio-max-len` | Maximum audio buffer length (seconds) | `30.0` |
| `--audio-min-len` | Minimum audio length to process (seconds) | `0.0` |
| `--cif-ckpt-path` | Path to CIF model for word boundary detection | `None` |
| `--never-fire` | Never truncate incomplete words | `False` |
| `--init-prompt` | Initial prompt for the model | `None` |
| `--static-init-prompt` | Static prompt that doesn't scroll | `None` |
| `--max-context-tokens` | Maximum context tokens | `None` |
| `--model-path` | Direct path to .pt model file. Download it if not found | `./base.pt` |

## ๐Ÿ”ง How It Works

1. **Audio Capture**: Browser's MediaRecorder API captures audio in webm/opus format
2. **Streaming**: Audio chunks are sent to the server via WebSocket
3. **Processing**: Server decodes audio with FFmpeg and streams into the model for transcription
4. **Real-time Output**: Partial transcriptions appear immediately in light gray (the 'aperรงu') and finalized text appears in normal color

## ๐Ÿš€ Deployment Guide

To deploy WhisperLiveKit in production:

1. **Server Setup** (Backend):
   ```bash
   # Install production ASGI server
   pip install uvicorn gunicorn

   # Launch with multiple workers
   gunicorn -k uvicorn.workers.UvicornWorker -w 4 your_app:app
   ```

2. **Frontend Integration**:
   - Host your customized version of the example HTML/JS in your web application
   - Ensure WebSocket connection points to your server's address

3. **Nginx Configuration** (recommended for production):
    ```nginx    
   server {
       listen 80;
       server_name your-domain.com;

    location / {
        proxy_pass http://localhost:8000;
        proxy_set_header Upgrade $http_upgrade;
        proxy_set_header Connection "upgrade";
        proxy_set_header Host $host;
    }}
    ```

4. **HTTPS Support**: For secure deployments, use "wss://" instead of "ws://" in WebSocket URL

### ๐Ÿ‹ Docker

A basic Dockerfile is provided which allows re-use of Python package installation options. โš ๏ธ For **large** models, ensure that your **docker runtime** has enough **memory** available. See below usage examples:


#### All defaults
- Create a reusable image with only the basics and then run as a named container:
    ```bash
    docker build -t whisperlivekit-defaults .
    docker create --gpus all --name whisperlivekit -p 8000:8000 whisperlivekit-defaults
    docker start -i whisperlivekit
    ```

    > **Note**: If you're running on a system without NVIDIA GPU support (such as Mac with Apple Silicon or any system without CUDA capabilities), you need to **remove the `--gpus all` flag** from the `docker create` command. Without GPU acceleration, transcription will use CPU only, which may be significantly slower. Consider using small models for better performance on CPU-only systems.

#### Customization
- Customize the container options:
    ```bash
    docker build -t whisperlivekit-defaults .
    docker create --gpus all --name whisperlivekit-base -p 8000:8000 whisperlivekit-defaults --model base
    docker start -i whisperlivekit-base
    ```

- `--build-arg` Options:
  - `EXTRAS="whisper-timestamped"` - Add extras to the image's installation (no spaces). Remember to set necessary container options!
  - `HF_PRECACHE_DIR="./.cache/"` - Pre-load a model cache for faster first-time start
  - `HF_TKN_FILE="./token"` - Add your Hugging Face Hub access token to download gated models

## ๐Ÿ”ฎ Use Cases
Capture discussions in real-time for meeting transcription, help hearing-impaired users follow conversations through accessibility tools, transcribe podcasts or videos automatically for content creation, transcribe support calls with speaker identification for customer service...

## ๐Ÿ™ Acknowledgments

We extend our gratitude to the original authors of:

| [Whisper Streaming](https://github.com/ufal/whisper_streaming)  | [SimulStreaming](https://github.com/ufal/SimulStreaming) | [Diart](https://github.com/juanmc2005/diart) | [OpenAI Whisper](https://github.com/openai/whisper) |
| -------- | ------- | -------- | ------- |