Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
fix(app): search/filter bug fix
Browse files
app.py
CHANGED
@@ -44,12 +44,12 @@ def update_table(
|
|
44 |
hidden_df: pd.DataFrame,
|
45 |
columns: list,
|
46 |
type_query: list,
|
47 |
-
precision_query: str,
|
48 |
-
size_query: list,
|
49 |
-
show_deleted: bool,
|
50 |
query: str,
|
51 |
):
|
52 |
-
filtered_df = filter_models(hidden_df, type_query
|
53 |
filtered_df = filter_queries(query, filtered_df)
|
54 |
df = select_columns(filtered_df, columns)
|
55 |
return df
|
@@ -84,7 +84,7 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
|
84 |
if len(final_df) > 0:
|
85 |
filtered_df = pd.concat(final_df)
|
86 |
filtered_df = filtered_df.drop_duplicates(
|
87 |
-
subset=[utils.AutoEvalColumn.model.name
|
88 |
)
|
89 |
|
90 |
return filtered_df
|
@@ -103,12 +103,12 @@ def filter_models(
|
|
103 |
|
104 |
type_emoji = [t[0] for t in type_query]
|
105 |
filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
106 |
-
filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
107 |
|
108 |
-
numeric_interval = pd.IntervalIndex(sorted([utils.NUMERIC_INTERVALS[s] for s in size_query]))
|
109 |
-
params_column = pd.to_numeric(df[utils.AutoEvalColumn.params.name], errors="coerce")
|
110 |
-
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
111 |
-
filtered_df = filtered_df.loc[mask]
|
112 |
|
113 |
return filtered_df
|
114 |
|
|
|
44 |
hidden_df: pd.DataFrame,
|
45 |
columns: list,
|
46 |
type_query: list,
|
47 |
+
# precision_query: str,
|
48 |
+
# size_query: list,
|
49 |
+
# show_deleted: bool,
|
50 |
query: str,
|
51 |
):
|
52 |
+
filtered_df = filter_models(hidden_df, type_query)#, size_query, precision_query, show_deleted)
|
53 |
filtered_df = filter_queries(query, filtered_df)
|
54 |
df = select_columns(filtered_df, columns)
|
55 |
return df
|
|
|
84 |
if len(final_df) > 0:
|
85 |
filtered_df = pd.concat(final_df)
|
86 |
filtered_df = filtered_df.drop_duplicates(
|
87 |
+
subset=[utils.AutoEvalColumn.model.name)#, utils.AutoEvalColumn.precision.name, utils.AutoEvalColumn.revision.name]
|
88 |
)
|
89 |
|
90 |
return filtered_df
|
|
|
103 |
|
104 |
type_emoji = [t[0] for t in type_query]
|
105 |
filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
106 |
+
# filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
107 |
|
108 |
+
# numeric_interval = pd.IntervalIndex(sorted([utils.NUMERIC_INTERVALS[s] for s in size_query]))
|
109 |
+
# params_column = pd.to_numeric(df[utils.AutoEvalColumn.params.name], errors="coerce")
|
110 |
+
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
111 |
+
# filtered_df = filtered_df.loc[mask]
|
112 |
|
113 |
return filtered_df
|
114 |
|