airlsyn commited on
Commit
d11977e
·
verified ·
1 Parent(s): 25328d1

fix(app): search/filter bug fix

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -44,12 +44,12 @@ def update_table(
44
  hidden_df: pd.DataFrame,
45
  columns: list,
46
  type_query: list,
47
- precision_query: str,
48
- size_query: list,
49
- show_deleted: bool,
50
  query: str,
51
  ):
52
- filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
53
  filtered_df = filter_queries(query, filtered_df)
54
  df = select_columns(filtered_df, columns)
55
  return df
@@ -84,7 +84,7 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
84
  if len(final_df) > 0:
85
  filtered_df = pd.concat(final_df)
86
  filtered_df = filtered_df.drop_duplicates(
87
- subset=[utils.AutoEvalColumn.model.name, utils.AutoEvalColumn.precision.name, utils.AutoEvalColumn.revision.name]
88
  )
89
 
90
  return filtered_df
@@ -103,12 +103,12 @@ def filter_models(
103
 
104
  type_emoji = [t[0] for t in type_query]
105
  filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
106
- filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
107
 
108
- numeric_interval = pd.IntervalIndex(sorted([utils.NUMERIC_INTERVALS[s] for s in size_query]))
109
- params_column = pd.to_numeric(df[utils.AutoEvalColumn.params.name], errors="coerce")
110
- mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
111
- filtered_df = filtered_df.loc[mask]
112
 
113
  return filtered_df
114
 
 
44
  hidden_df: pd.DataFrame,
45
  columns: list,
46
  type_query: list,
47
+ # precision_query: str,
48
+ # size_query: list,
49
+ # show_deleted: bool,
50
  query: str,
51
  ):
52
+ filtered_df = filter_models(hidden_df, type_query)#, size_query, precision_query, show_deleted)
53
  filtered_df = filter_queries(query, filtered_df)
54
  df = select_columns(filtered_df, columns)
55
  return df
 
84
  if len(final_df) > 0:
85
  filtered_df = pd.concat(final_df)
86
  filtered_df = filtered_df.drop_duplicates(
87
+ subset=[utils.AutoEvalColumn.model.name)#, utils.AutoEvalColumn.precision.name, utils.AutoEvalColumn.revision.name]
88
  )
89
 
90
  return filtered_df
 
103
 
104
  type_emoji = [t[0] for t in type_query]
105
  filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
106
+ # filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
107
 
108
+ # numeric_interval = pd.IntervalIndex(sorted([utils.NUMERIC_INTERVALS[s] for s in size_query]))
109
+ # params_column = pd.to_numeric(df[utils.AutoEvalColumn.params.name], errors="coerce")
110
+ # mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
111
+ # filtered_df = filtered_df.loc[mask]
112
 
113
  return filtered_df
114