Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,371 Bytes
5b8270b 8c1d120 5b8270b f6a0cc8 5b8270b f6a0cc8 b07f8ef f6a0cc8 b07f8ef f6a0cc8 b07f8ef f6a0cc8 b07f8ef f6a0cc8 b07f8ef 5b8270b f6a0cc8 a2a7641 f6a0cc8 a2a7641 d4cae39 5b8270b f6a0cc8 5b8270b d4cae39 5b8270b f6a0cc8 5b8270b f6a0cc8 b07f8ef f6a0cc8 5b8270b d4cae39 f6a0cc8 d4cae39 f6a0cc8 d4cae39 f6a0cc8 d4cae39 f6a0cc8 b07f8ef f6a0cc8 b07f8ef f6a0cc8 d4cae39 f6a0cc8 5b8270b f6a0cc8 5b8270b f6a0cc8 5b8270b f6a0cc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16
).to("cuda")
@spaces.GPU
def infer(
input_image,
prompt,
seed=42,
randomize_seed=False,
guidance_scale=2.5,
steps=28,
progress=gr.Progress(track_tqdm=True),
):
"""
Edit an image using AI based on text instructions.
Args:
input_image (optional): Path to the image file to edit (if None, generates from text only)
prompt (required): Text describing what to change (e.g. "remove glasses", "add a hat", "change background to beach")
seed (optional): Random seed for reproducibility (default: 42)
randomize_seed (optional): Use random seed instead of fixed seed (default: False)
guidance_scale (optional): How closely to follow the prompt, 1.0-10.0 (default: 2.5)
steps (optional): Number of generation steps, 1-30 (default: 28)
progress (optional): Gradio progress tracker (automatically provided)
Returns:
tuple: (edited_image, seed_used, gradio_update)
Example:
infer(input_image="/path/to/photo.jpg", prompt="Add sunglasses")
"""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if input_image:
input_image = input_image.convert("RGB")
image = pipe(
image=input_image,
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
else:
image = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
return image, seed, gr.update(visible=True)
css = """
#col-container {
margin: 0 auto;
max-width: 960px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
f"""# FLUX.1 Kontext [dev]
Image editing and manipulation model guidance-distilled from FLUX.1 Kontext [pro], [[blog]](https://bfl.ai/announcements/flux-1-kontext-dev) [[model]](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev)
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload the image for editing", type="pil")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
steps = gr.Slider(
label="Steps", minimum=1, maximum=30, value=28, step=1
)
with gr.Column():
result = gr.Image(label="Result", show_label=False, interactive=False)
reuse_button = gr.Button("Reuse this image", visible=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[input_image, prompt, seed, randomize_seed, guidance_scale, steps],
outputs=[result, seed, reuse_button],
)
reuse_button.click(fn=lambda image: image, inputs=[result], outputs=[input_image])
demo.launch(mcp_server=True)
|