Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from PIL import Image | |
import google.generativeai as genai | |
import os | |
import markdown2 | |
# Load the TensorFlow model | |
model_path = 'model' | |
model = tf.saved_model.load(model_path) | |
# Configure Gemini API | |
api_key = os.getenv("GEMINI_API_KEY") | |
genai.configure(api_key=api_key) | |
labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal'] | |
def get_disease_detail(disease_name): | |
if disease_name == "normal": | |
prompt = ( | |
"Create a text that congratulates having healthy eyes and gives bullet point tips to keep eyes healthy." | |
) | |
else: | |
prompt = ( | |
f"Diagnosis: {disease_name}\n\n" | |
"What is it?\n(Description about {disease_name})\n\n" | |
"What causes it?\n(Explain what causes {disease_name})\n\n" | |
"Suggestion\n(Suggestion to user)\n\n" | |
"Reminder: Always seek professional help, such as a doctor." | |
) | |
try: | |
response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt) | |
return markdown2.markdown(response.text.strip()) | |
except Exception as e: | |
return f"Error: {e}" | |
def predict_image(image): | |
image_resized = image.resize((224, 224)) | |
image_array = np.array(image_resized).astype(np.float32) / 255.0 | |
image_array = np.expand_dims(image_array, axis=0) | |
predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0'] | |
# Highest prediction | |
top_index = np.argmax(predictions.numpy(), axis=1)[0] | |
top_label = labels[top_index] | |
top_probability = predictions.numpy()[0][top_index] | |
explanation = get_disease_detail(top_label) | |
return {top_label: top_probability}, explanation | |
# Example images | |
example_images = [ | |
["exp_eye_images/0_right_h.png"], | |
["exp_eye_images/03fd50da928d_dr.png"], | |
["exp_eye_images/108_right_h.png"], | |
["exp_eye_images/1062_right_c.png"], | |
["exp_eye_images/1084_right_c.png"], | |
["exp_eye_images/image_1002_g.jpg"] | |
] | |
# Custom CSS for HTML height | |
css = """ | |
.scrollable-html { | |
height: 206px; | |
overflow-y: auto; | |
border: 1px solid #ccc; | |
padding: 10px; | |
box-sizing: border-box; | |
} | |
""" | |
# Gradio Interface | |
interface = gr.Interface( | |
fn=predict_image, | |
inputs=gr.Image(type="pil"), | |
outputs=[ | |
gr.Label(num_top_classes=1, label="Prediction"), | |
gr.HTML(label="Explanation", elem_classes=["scrollable-html"]) | |
], | |
examples=example_images, | |
title="Eye Diseases Classifier", | |
description=( | |
"Upload an image of an eye fundus, and the model will predict it.\n\n" | |
"**Disclaimer:** This model is intended as a form of learning process in the field of health-related machine learning and was trained with a limited amount and variety of data with a total of about 4000 data, so the prediction results may not always be correct. There is still a lot of room for improvisation on this model in the future." | |
), | |
allow_flagging="never", | |
css=css | |
) | |
interface.launch(share=True) | |