import gradio as gr import tensorflow as tf import numpy as np from PIL import Image import google.generativeai as genai import os import markdown2 # Load the TensorFlow model model_path = 'model' model = tf.saved_model.load(model_path) # Configure Gemini API api_key = os.getenv("GEMINI_API_KEY") genai.configure(api_key=api_key) labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal'] def get_disease_detail(disease_name): if disease_name == "normal": prompt = ( "Create a text that congratulates having healthy eyes and gives bullet point tips to keep eyes healthy." ) else: prompt = ( f"Diagnosis: {disease_name}\n\n" "What is it?\n(Description about {disease_name})\n\n" "What causes it?\n(Explain what causes {disease_name})\n\n" "Suggestion\n(Suggestion to user)\n\n" "Reminder: Always seek professional help, such as a doctor." ) try: response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt) return markdown2.markdown(response.text.strip()) except Exception as e: return f"Error: {e}" def predict_image(image): image_resized = image.resize((224, 224)) image_array = np.array(image_resized).astype(np.float32) / 255.0 image_array = np.expand_dims(image_array, axis=0) predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0'] # Highest prediction top_index = np.argmax(predictions.numpy(), axis=1)[0] top_label = labels[top_index] top_probability = predictions.numpy()[0][top_index] explanation = get_disease_detail(top_label) return {top_label: top_probability}, explanation # Example images example_images = [ ["exp_eye_images/0_right_h.png"], ["exp_eye_images/03fd50da928d_dr.png"], ["exp_eye_images/108_right_h.png"], ["exp_eye_images/1062_right_c.png"], ["exp_eye_images/1084_right_c.png"], ["exp_eye_images/image_1002_g.jpg"] ] # Custom CSS for HTML height css = """ .scrollable-html { height: 206px; overflow-y: auto; border: 1px solid #ccc; padding: 10px; box-sizing: border-box; } """ # Gradio Interface interface = gr.Interface( fn=predict_image, inputs=gr.Image(type="pil"), outputs=[ gr.Label(num_top_classes=1, label="Prediction"), gr.HTML(label="Explanation", elem_classes=["scrollable-html"]) ], examples=example_images, title="Eye Diseases Classifier", description=( "Upload an image of an eye fundus, and the model will predict it.\n\n" "**Disclaimer:** This model is intended as a form of learning process in the field of health-related machine learning and was trained with a limited amount and variety of data with a total of about 4000 data, so the prediction results may not always be correct. There is still a lot of room for improvisation on this model in the future." ), allow_flagging="never", css=css ) interface.launch(share=True)