Update app.py
Browse files
app.py
CHANGED
@@ -2,54 +2,95 @@ import gradio as gr
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
-
import google.generativeai as genai
|
6 |
import os
|
7 |
import markdown2
|
8 |
|
9 |
-
# Load TensorFlow model
|
10 |
-
|
11 |
-
|
12 |
|
13 |
# Configure Gemini API
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
try:
|
25 |
response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt)
|
26 |
-
return markdown2.markdown(response.text.strip()
|
27 |
except Exception as e:
|
28 |
return f"Error: {e}"
|
29 |
|
30 |
-
# Process and predict uploaded image
|
31 |
def predict_image(image):
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
top_label = labels[np.argmax(predictions.numpy())]
|
36 |
explanation = get_disease_detail(top_label)
|
37 |
|
38 |
-
return {top_label:
|
39 |
|
40 |
# Example images
|
41 |
-
example_images = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# Gradio Interface
|
44 |
interface = gr.Interface(
|
45 |
fn=predict_image,
|
46 |
inputs=gr.Image(type="pil"),
|
47 |
-
outputs=[
|
|
|
|
|
|
|
48 |
examples=example_images,
|
49 |
-
title="DR
|
50 |
-
description=(
|
|
|
|
|
|
|
51 |
allow_flagging="never",
|
52 |
-
css=
|
53 |
)
|
54 |
|
55 |
interface.launch(share=True)
|
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
+
import google.generativeai as genai
|
6 |
import os
|
7 |
import markdown2
|
8 |
|
9 |
+
# Load the TensorFlow model
|
10 |
+
model_path = 'model'
|
11 |
+
model = tf.saved_model.load(model_path)
|
12 |
|
13 |
# Configure Gemini API
|
14 |
+
api_key = os.getenv("GOOGLE_API_KEY")
|
15 |
+
api_key = "AIzaSyClC-moPGp4ONPUQ0FnNjMPh035AN7oqtY"
|
16 |
+
|
17 |
+
genai.configure(api_key=api_key)
|
18 |
+
|
19 |
+
|
20 |
+
labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal']
|
21 |
+
|
22 |
+
def get_disease_detail(disease_name):
|
23 |
+
if disease_name == "normal":
|
24 |
+
prompt = (
|
25 |
+
"Create a text that congratulates having healthy eyes and gives bullet point tips to keep eyes healthy."
|
26 |
+
)
|
27 |
+
else:
|
28 |
+
prompt = (
|
29 |
+
f"Diagnosis: {disease_name}\n\n"
|
30 |
+
"What is it?\n(Description about {disease_name})\n\n"
|
31 |
+
"What causes it?\n(Explain what causes {disease_name})\n\n"
|
32 |
+
"Suggestion\n(Suggestion to user)\n\n"
|
33 |
+
"Reminder: Always seek professional help, such as a doctor."
|
34 |
+
)
|
35 |
try:
|
36 |
response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt)
|
37 |
+
return markdown2.markdown(response.text.strip())
|
38 |
except Exception as e:
|
39 |
return f"Error: {e}"
|
40 |
|
|
|
41 |
def predict_image(image):
|
42 |
+
image_resized = image.resize((224, 224))
|
43 |
+
image_array = np.array(image_resized).astype(np.float32) / 255.0
|
44 |
+
image_array = np.expand_dims(image_array, axis=0)
|
45 |
+
|
46 |
+
predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0']
|
47 |
+
|
48 |
+
# Highest prediction
|
49 |
+
top_index = np.argmax(predictions.numpy(), axis=1)[0]
|
50 |
+
top_label = labels[top_index]
|
51 |
+
top_probability = predictions.numpy()[0][top_index]
|
52 |
|
|
|
53 |
explanation = get_disease_detail(top_label)
|
54 |
|
55 |
+
return {top_label: top_probability}, explanation
|
56 |
|
57 |
# Example images
|
58 |
+
example_images = [
|
59 |
+
["exp_eye_images/0_right_h.png"],
|
60 |
+
["exp_eye_images/03fd50da928d_dr.png"],
|
61 |
+
["exp_eye_images/108_right_h.png"],
|
62 |
+
["exp_eye_images/1062_right_c.png"],
|
63 |
+
["exp_eye_images/1084_right_c.png"],
|
64 |
+
["exp_eye_images/image_1002_g.jpg"]
|
65 |
+
]
|
66 |
+
|
67 |
+
# Custom CSS for HTML height
|
68 |
+
css = """
|
69 |
+
.scrollable-html {
|
70 |
+
height: 206px;
|
71 |
+
overflow-y: auto;
|
72 |
+
border: 1px solid #ccc;
|
73 |
+
padding: 10px;
|
74 |
+
box-sizing: border-box;
|
75 |
+
}
|
76 |
+
"""
|
77 |
|
78 |
# Gradio Interface
|
79 |
interface = gr.Interface(
|
80 |
fn=predict_image,
|
81 |
inputs=gr.Image(type="pil"),
|
82 |
+
outputs=[
|
83 |
+
gr.Label(num_top_classes=1, label="Prediction"),
|
84 |
+
gr.HTML(label="Explanation", elem_classes=["scrollable-html"])
|
85 |
+
],
|
86 |
examples=example_images,
|
87 |
+
title="DR PREDICTOR",
|
88 |
+
description=(
|
89 |
+
"Upload an image of an eye fundus, and the model will predict it.\n\n"
|
90 |
+
"**Disclaimer:** This model is intended as a form of learning process in the field of health-related machine learning and was trained with a limited amount and variety of data with a total of about 4000 data, so the prediction results may not always be correct. There is still a lot of room for improvisation on this model in the future."
|
91 |
+
),
|
92 |
allow_flagging="never",
|
93 |
+
css=css
|
94 |
)
|
95 |
|
96 |
interface.launch(share=True)
|