Update app.py
Browse files
app.py
CHANGED
@@ -6,41 +6,48 @@ import google.generativeai as genai
|
|
6 |
import os
|
7 |
import markdown2
|
8 |
|
9 |
-
# Load TensorFlow model
|
10 |
model = tf.saved_model.load('model')
|
11 |
-
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
12 |
-
|
13 |
-
# Disease labels & inline prompt generation for AI response
|
14 |
labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal']
|
15 |
-
prompt_map = lambda disease: (
|
16 |
-
"Provide a congratulatory message for healthy eyes with tips for maintenance." if disease == "normal"
|
17 |
-
else f"Diagnosis: {disease}\nDescription, causes, and prevention advice for {disease}."
|
18 |
-
)
|
19 |
|
20 |
-
#
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
try:
|
23 |
-
response = genai.GenerativeModel("gemini-1.5-flash").generate_content(
|
24 |
-
return markdown2.markdown(response.text.strip()
|
25 |
except Exception as e:
|
26 |
return f"Error: {e}"
|
27 |
|
28 |
-
#
|
29 |
def predict_image(image):
|
30 |
-
img_array = np.expand_dims(np.array(image.resize((224, 224))) / 255.0, axis=0)
|
31 |
-
predictions = model.signatures['serving_default'](tf.convert_to_tensor(img_array))['output_0']
|
32 |
|
33 |
top_label = labels[np.argmax(predictions.numpy())]
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
# Gradio Interface
|
37 |
interface = gr.Interface(
|
38 |
fn=predict_image,
|
39 |
inputs=gr.Image(type="pil"),
|
40 |
outputs=[gr.Label(num_top_classes=1, label="Prediction"), gr.HTML(label="Explanation", elem_classes=["scrollable-html"])],
|
41 |
-
examples=
|
42 |
title="DR Predictor",
|
43 |
-
description="Upload an eye fundus image
|
44 |
allow_flagging="never",
|
45 |
css=".scrollable-html {height: 206px; overflow-y: auto; border: 1px solid #ccc; padding: 10px; box-sizing: border-box;}"
|
46 |
)
|
|
|
6 |
import os
|
7 |
import markdown2
|
8 |
|
9 |
+
# Load TensorFlow model
|
10 |
model = tf.saved_model.load('model')
|
|
|
|
|
|
|
11 |
labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal']
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Configure Gemini API
|
14 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
15 |
+
|
16 |
+
# Generate AI-based explanation for the predicted disease
|
17 |
+
def get_disease_detail(disease):
|
18 |
+
prompt = (
|
19 |
+
"Create a text congratulating on healthy eyes with tips to keep them healthy."
|
20 |
+
if disease == "normal" else
|
21 |
+
f"Diagnosis: {disease}\n\n"
|
22 |
+
f"What is {disease}?\nCauses and suggestions to prevent {disease}."
|
23 |
+
)
|
24 |
try:
|
25 |
+
response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt)
|
26 |
+
return markdown2.markdown(response.text.strip() if response and response.text else "No response.")
|
27 |
except Exception as e:
|
28 |
return f"Error: {e}"
|
29 |
|
30 |
+
# Process and predict uploaded image
|
31 |
def predict_image(image):
|
32 |
+
img_array = np.expand_dims(np.array(image.resize((224, 224))).astype(np.float32) / 255.0, axis=0)
|
33 |
+
predictions = model.signatures['serving_default'](tf.convert_to_tensor(img_array, dtype=tf.float32))['output_0']
|
34 |
|
35 |
top_label = labels[np.argmax(predictions.numpy())]
|
36 |
+
explanation = get_disease_detail(top_label)
|
37 |
+
|
38 |
+
return {top_label: predictions.numpy().max()}, explanation
|
39 |
+
|
40 |
+
# Example images
|
41 |
+
example_images = [[f"exp_eye_images/{img}"] for img in ["0_right_h.png", "03fd50da928d_dr.png", "108_right_h.png", "1062_right_c.png", "1084_right_c.png", "image_1002_g.jpg"]]
|
42 |
|
43 |
+
# Gradio Interface
|
44 |
interface = gr.Interface(
|
45 |
fn=predict_image,
|
46 |
inputs=gr.Image(type="pil"),
|
47 |
outputs=[gr.Label(num_top_classes=1, label="Prediction"), gr.HTML(label="Explanation", elem_classes=["scrollable-html"])],
|
48 |
+
examples=example_images,
|
49 |
title="DR Predictor",
|
50 |
+
description=("Upload an eye fundus image, and the model predicts the condition. This model is for educational use only."),
|
51 |
allow_flagging="never",
|
52 |
css=".scrollable-html {height: 206px; overflow-y: auto; border: 1px solid #ccc; padding: 10px; box-sizing: border-box;}"
|
53 |
)
|