Update app.py
Browse files
app.py
CHANGED
@@ -2,92 +2,54 @@ import gradio as gr
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
-
import google.generativeai as genai
|
6 |
import os
|
7 |
import markdown2
|
8 |
|
9 |
-
# Load
|
10 |
-
|
11 |
-
model = tf.saved_model.load(model_path)
|
12 |
-
|
13 |
-
# Configure Gemini API
|
14 |
-
api_key = os.getenv("GEMINI_API_KEY")
|
15 |
-
genai.configure(api_key=api_key)
|
16 |
-
|
17 |
labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal']
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
"Reminder: Always seek professional help, such as a doctor."
|
31 |
-
)
|
32 |
try:
|
33 |
response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt)
|
34 |
-
return markdown2.markdown(response.text.strip())
|
35 |
except Exception as e:
|
36 |
return f"Error: {e}"
|
37 |
|
|
|
38 |
def predict_image(image):
|
39 |
-
|
40 |
-
|
41 |
-
image_array = np.expand_dims(image_array, axis=0)
|
42 |
-
|
43 |
-
predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0']
|
44 |
-
|
45 |
-
# Highest prediction
|
46 |
-
top_index = np.argmax(predictions.numpy(), axis=1)[0]
|
47 |
-
top_label = labels[top_index]
|
48 |
-
top_probability = predictions.numpy()[0][top_index]
|
49 |
|
|
|
50 |
explanation = get_disease_detail(top_label)
|
51 |
|
52 |
-
return {top_label:
|
53 |
|
54 |
# Example images
|
55 |
-
example_images = [
|
56 |
-
["exp_eye_images/0_right_h.png"],
|
57 |
-
["exp_eye_images/03fd50da928d_dr.png"],
|
58 |
-
["exp_eye_images/108_right_h.png"],
|
59 |
-
["exp_eye_images/1062_right_c.png"],
|
60 |
-
["exp_eye_images/1084_right_c.png"],
|
61 |
-
["exp_eye_images/image_1002_g.jpg"]
|
62 |
-
]
|
63 |
-
|
64 |
-
# Custom CSS for HTML height
|
65 |
-
css = """
|
66 |
-
.scrollable-html {
|
67 |
-
height: 206px;
|
68 |
-
overflow-y: auto;
|
69 |
-
border: 1px solid #ccc;
|
70 |
-
padding: 10px;
|
71 |
-
box-sizing: border-box;
|
72 |
-
}
|
73 |
-
"""
|
74 |
|
75 |
# Gradio Interface
|
76 |
interface = gr.Interface(
|
77 |
fn=predict_image,
|
78 |
inputs=gr.Image(type="pil"),
|
79 |
-
outputs=[
|
80 |
-
gr.Label(num_top_classes=1, label="Prediction"),
|
81 |
-
gr.HTML(label="Explanation", elem_classes=["scrollable-html"])
|
82 |
-
],
|
83 |
examples=example_images,
|
84 |
-
title="
|
85 |
-
description=(
|
86 |
-
"Upload an image of an eye fundus, and the model will predict it.\n\n"
|
87 |
-
"**Disclaimer:** This model is intended as a form of learning process in the field of health-related machine learning and was trained with a limited amount and variety of data with a total of about 4000 data, so the prediction results may not always be correct. There is still a lot of room for improvisation on this model in the future."
|
88 |
-
),
|
89 |
allow_flagging="never",
|
90 |
-
css=
|
91 |
)
|
92 |
|
93 |
interface.launch(share=True)
|
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
+
import google.generativeai as genai
|
6 |
import os
|
7 |
import markdown2
|
8 |
|
9 |
+
# Load TensorFlow model
|
10 |
+
model = tf.saved_model.load('model')
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal']
|
12 |
|
13 |
+
# Configure Gemini API
|
14 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
15 |
+
|
16 |
+
# Generate AI-based explanation for the predicted disease
|
17 |
+
def get_disease_detail(disease):
|
18 |
+
prompt = (
|
19 |
+
"Create a text congratulating on healthy eyes with tips to keep them healthy."
|
20 |
+
if disease == "normal" else
|
21 |
+
f"Diagnosis: {disease}\n\n"
|
22 |
+
f"What is {disease}?\nCauses and suggestions to prevent {disease}."
|
23 |
+
)
|
|
|
|
|
24 |
try:
|
25 |
response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt)
|
26 |
+
return markdown2.markdown(response.text.strip() if response and response.text else "No response.")
|
27 |
except Exception as e:
|
28 |
return f"Error: {e}"
|
29 |
|
30 |
+
# Process and predict uploaded image
|
31 |
def predict_image(image):
|
32 |
+
img_array = np.expand_dims(np.array(image.resize((224, 224))).astype(np.float32) / 255.0, axis=0)
|
33 |
+
predictions = model.signatures['serving_default'](tf.convert_to_tensor(img_array, dtype=tf.float32))['output_0']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
top_label = labels[np.argmax(predictions.numpy())]
|
36 |
explanation = get_disease_detail(top_label)
|
37 |
|
38 |
+
return {top_label: predictions.numpy().max()}, explanation
|
39 |
|
40 |
# Example images
|
41 |
+
example_images = [[f"exp_eye_images/{img}"] for img in ["0_right_h.png", "03fd50da928d_dr.png", "108_right_h.png", "1062_right_c.png", "1084_right_c.png", "image_1002_g.jpg"]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# Gradio Interface
|
44 |
interface = gr.Interface(
|
45 |
fn=predict_image,
|
46 |
inputs=gr.Image(type="pil"),
|
47 |
+
outputs=[gr.Label(num_top_classes=1, label="Prediction"), gr.HTML(label="Explanation", elem_classes=["scrollable-html"])],
|
|
|
|
|
|
|
48 |
examples=example_images,
|
49 |
+
title="DR Predictor",
|
50 |
+
description=("Upload an eye fundus image, and the model predicts the condition."),
|
|
|
|
|
|
|
51 |
allow_flagging="never",
|
52 |
+
css=".scrollable-html {height: 206px; overflow-y: auto; border: 1px solid #ccc; padding: 10px; box-sizing: border-box;}"
|
53 |
)
|
54 |
|
55 |
interface.launch(share=True)
|