File size: 4,813 Bytes
be63200
db70198
375bd04
db70198
3373c54
db70198
 
 
 
 
 
 
1dc9fa7
db70198
7713f97
 
 
 
 
 
 
db70198
7713f97
3373c54
7713f97
 
 
 
 
 
3373c54
db70198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be63200
de20d93
db70198
259cbe8
9e53bcd
db70198
 
 
a850fbe
db70198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7713f97
 
db70198
 
7713f97
db70198
 
7713f97
 
 
 
 
 
 
 
 
db70198
7713f97
 
 
db70198
7713f97
 
 
 
3373c54
db70198
7713f97
db70198
 
7713f97
 
db70198
7713f97
 
 
db70198
7713f97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import tempfile

import streamlit as st

from langchain.callbacks.base import BaseCallbackHandler
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import DocArrayInMemorySearch
from streamlit_extras.add_vertical_space import add_vertical_space

# TODO: refactor
# TODO: extract class
# TODO: modularize
# TODO: hide side bar
# TODO: make the page attactive

st.set_page_config(page_title=":books: InkChatGPT: Chat with Documents", page_icon="πŸ“š")

st.image("./assets/icon.jpg", width=150)
st.header(":gray[:books: InkChatGPT]", divider="blue")
st.write("**Chat** with Documents")

# Setup memory for contextual conversation
msgs = StreamlitChatMessageHistory()


@st.cache_resource(ttl="1h")
def configure_retriever(uploaded_files):
    # Read documents
    docs = []
    temp_dir = tempfile.TemporaryDirectory()
    for file in uploaded_files:
        temp_filepath = os.path.join(temp_dir.name, file.name)
        with open(temp_filepath, "wb") as f:
            f.write(file.getvalue())
        loader = PyPDFLoader(temp_filepath)
        docs.extend(loader.load())

    # Split documents
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=200)
    splits = text_splitter.split_documents(docs)

    # Create embeddings and store in vectordb
    embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
    vectordb = DocArrayInMemorySearch.from_documents(splits, embeddings)

    # Define retriever
    retriever = vectordb.as_retriever(
        search_type="mmr", search_kwargs={"k": 2, "fetch_k": 4}
    )

    return retriever


class StreamHandler(BaseCallbackHandler):
    def __init__(
        self, container: st.delta_generator.DeltaGenerator, initial_text: str = ""
    ):
        self.container = container
        self.text = initial_text
        self.run_id_ignore_token = None

    def on_llm_start(self, serialized: dict, prompts: list, **kwargs):
        # Workaround to prevent showing the rephrased question as output
        if prompts[0].startswith("Human"):
            self.run_id_ignore_token = kwargs.get("run_id")

    def on_llm_new_token(self, token: str, **kwargs) -> None:
        if self.run_id_ignore_token == kwargs.get("run_id", False):
            return
        self.text += token
        self.container.markdown(self.text)


class PrintRetrievalHandler(BaseCallbackHandler):
    def __init__(self, container):
        self.status = container.status("**Thinking...**")
        self.container = container

    def on_retriever_start(self, serialized: dict, query: str, **kwargs):
        self.status.write(f"**Checking document for query:** `{query}`. Please wait...")

    def on_retriever_end(self, documents, **kwargs):
        self.container.empty()


with st.sidebar.expander("Documents"):
    st.subheader("Files")
    uploaded_files = st.file_uploader(
        label="Select PDF files", type=["pdf"], accept_multiple_files=True
    )


with st.sidebar.expander("Setup"):
    st.subheader("API Key")
    openai_api_key = st.text_input("OpenAI API Key", type="password")

    is_empty_chat_messages = len(msgs.messages) == 0
    if is_empty_chat_messages or st.button("Clear message history"):
        msgs.clear()
        msgs.add_ai_message("How can I help you?")

if not openai_api_key:
    st.info("Please add your OpenAI API key in the sidebar to continue.")
    st.stop()

if uploaded_files:
    retriever = configure_retriever(uploaded_files)

    memory = ConversationBufferMemory(
        memory_key="chat_history", chat_memory=msgs, return_messages=True
    )

    # Setup LLM and QA chain
    llm = ChatOpenAI(
        model_name="gpt-3.5-turbo",
        openai_api_key=openai_api_key,
        temperature=0,
        streaming=True,
    )

    chain = ConversationalRetrievalChain.from_llm(
        llm, retriever=retriever, memory=memory, verbose=False
    )

    avatars = {"human": "user", "ai": "assistant"}
    for msg in msgs.messages:
        st.chat_message(avatars[msg.type]).write(msg.content)

    if user_query := st.chat_input(placeholder="Ask me anything!"):
        st.chat_message("user").write(user_query)

        with st.chat_message("assistant"):
            retrieval_handler = PrintRetrievalHandler(st.empty())
            stream_handler = StreamHandler(st.empty())
            response = chain.run(
                user_query, callbacks=[retrieval_handler, stream_handler]
            )