get-c-image / app.py
vinithius's picture
Update app.py
f7d8642 verified
import torch
from torch import nn
from transformers import AutoImageProcessor, AutoModel
import gradio as gr
import numpy as np
from PIL import Image
# Nome do modelo no Hugging Face Hub
MODEL_NAME = "facebook/dinov2-small"
# Carregando processador e modelo
processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME)
# Projeção para 512D (caso a saída seja >512, reduzimos)
projection = nn.Linear(model.config.hidden_size, 512)
def get_embedding(image: Image.Image):
# Preprocessamento
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Usando o CLS token como embedding da imagem
last_hidden_state = outputs.last_hidden_state # (batch, seq_len, hidden)
embedding = last_hidden_state[:, 0] # pegando o [CLS] token
# Projeta para 512D
embedding_512 = projection(embedding)
# Converte para lista Python
return embedding_512.squeeze().tolist()
# Cria API com Gradio (sem interface visual, apenas endpoint)
iface = gr.Interface(
fn=get_embedding,
inputs=gr.Image(type="pil"),
outputs=gr.JSON(),
live=False,
api_name="embed" # endpoint em /embed
)
if __name__ == "__main__":
iface.launch()