Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForMaskedLM
|
| 2 |
+
from transformers import AutoTokenizer
|
| 3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import torch
|
| 6 |
+
import pickle
|
| 7 |
+
|
| 8 |
+
model_checkpoint = "vives/distilbert-base-uncased-finetuned-cvent-2019_2022"
|
| 9 |
+
model = AutoModelForMaskedLM.from_pretrained(model_checkpoint, output_hidden_states=True)
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 11 |
+
text = st.text_input("Enter word or key-phrase")
|
| 12 |
+
exclude_text = st.radio("exclude_text",[True,False])
|
| 13 |
+
exclude_words = st.radio("exclude_words",[True,False])
|
| 14 |
+
k = st.number_input("Top k nearest key-phrases",1,10)
|
| 15 |
+
|
| 16 |
+
with open("kp_dict_merged.pickle",'rb') as handle:
|
| 17 |
+
kp_dict = pickle.load(handle)
|
| 18 |
+
|
| 19 |
+
def calculate_top_k(out, tokens,text,exclude_text=False,exclude_words=False, k=5):
|
| 20 |
+
sim_dict = {}
|
| 21 |
+
pools = pool_embeddings(out, tokens).detach().numpy()
|
| 22 |
+
for key in kp_dict.keys():
|
| 23 |
+
if key == text:
|
| 24 |
+
continue
|
| 25 |
+
if exclude_text and text in key:
|
| 26 |
+
continue
|
| 27 |
+
if exclude_words and True in [x in key for x in text.split(" ")]:
|
| 28 |
+
continue
|
| 29 |
+
sim_dict[key] = cosine_similarity(
|
| 30 |
+
pools,
|
| 31 |
+
[kp_dict[key]]
|
| 32 |
+
)[0][0]
|
| 33 |
+
sims = sorted(sim_dict.items(), key= lambda x: x[1], reverse = True)[:k]
|
| 34 |
+
return {x:y for x,y in sims}
|
| 35 |
+
def concat_tokens(sentences):
|
| 36 |
+
tokens = {'input_ids': [], 'attention_mask': [], 'KPS': []}
|
| 37 |
+
for sentence in sentences:
|
| 38 |
+
# encode each sentence and append to dictionary
|
| 39 |
+
new_tokens = tokenizer.encode_plus(sentence, max_length=64,
|
| 40 |
+
truncation=True, padding='max_length',
|
| 41 |
+
return_tensors='pt')
|
| 42 |
+
tokens['input_ids'].append(new_tokens['input_ids'][0])
|
| 43 |
+
tokens['attention_mask'].append(new_tokens['attention_mask'][0])
|
| 44 |
+
tokens['KPS'].append(sentence)
|
| 45 |
+
# reformat list of tensors into single tensor
|
| 46 |
+
tokens['input_ids'] = torch.stack(tokens['input_ids'])
|
| 47 |
+
tokens['attention_mask'] = torch.stack(tokens['attention_mask'])
|
| 48 |
+
return tokens
|
| 49 |
+
|
| 50 |
+
def pool_embeddings(out, tok):
|
| 51 |
+
embeddings = out["hidden_states"][-1]
|
| 52 |
+
attention_mask = tok['attention_mask']
|
| 53 |
+
mask = attention_mask.unsqueeze(-1).expand(embeddings.size()).float()
|
| 54 |
+
masked_embeddings = embeddings * mask
|
| 55 |
+
summed = torch.sum(masked_embeddings, 1)
|
| 56 |
+
summed_mask = torch.clamp(mask.sum(1), min=1e-9)
|
| 57 |
+
mean_pooled = summed / summed_mask
|
| 58 |
+
return mean_pooled
|
| 59 |
+
|
| 60 |
+
if text:
|
| 61 |
+
new_tokens = concat_tokens([text])
|
| 62 |
+
new_tokens.pop("KPS")
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
outputs = model(**new_tokens)
|
| 65 |
+
sim_dict = calculate_top_k(outputs, new_tokens, text, exclude_text=exclude_text,exclude_words=exclude_words,k=k)
|
| 66 |
+
st.json(sim_dict)
|