Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| import gradio as gr | |
| import spaces | |
| import torch | |
| # from pipeline_ltx_condition import LTXVideoCondition, LTXConditionPipeline | |
| # from diffusers import LTXLatentUpsamplePipeline | |
| from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline | |
| from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition | |
| from diffusers.utils import export_to_video, load_video | |
| import numpy as np | |
| pipe = LTXConditionPipeline.from_pretrained("linoyts/LTX-Video-0.9.7-distilled-diffusers", torch_dtype=torch.bfloat16) | |
| pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.7-Latent-Spatial-Upsampler-diffusers", vae=pipe.vae, torch_dtype=torch.bfloat16) | |
| pipe.to("cuda") | |
| pipe_upsample.to("cuda") | |
| pipe.vae.enable_tiling() | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| def round_to_nearest_resolution_acceptable_by_vae(height, width): | |
| print("before rounding",height, width) | |
| height = height - (height % pipe.vae_spatial_compression_ratio) | |
| width = width - (width % pipe.vae_spatial_compression_ratio) | |
| print("after rounding",height, width) | |
| return height, width | |
| def change_mode_to_text(): | |
| return gr.update(value="text-to-video") | |
| def change_mode_to_image(): | |
| return gr.update(value="image-to-video") | |
| def change_mode_to_video(): | |
| return gr.update(value="video-to-video") | |
| def generate(prompt, | |
| negative_prompt, | |
| image, | |
| video, | |
| height, | |
| width, | |
| mode, | |
| steps, | |
| num_frames, | |
| frames_to_use, | |
| seed, | |
| randomize_seed, | |
| guidance_scale, | |
| improve_texture=False, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| # Part 1. Generate video at smaller resolution | |
| # Text-only conditioning is also supported without the need to pass `conditions` | |
| expected_height, expected_width = height, width | |
| downscale_factor = 2 / 3 | |
| downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor) | |
| downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width) | |
| print(mode) | |
| if mode == "text-to-video" and (video is not None): | |
| video = load_video(video)[:frames_to_use] | |
| condition = True | |
| elif mode == "image-to-video" and (image is not None): | |
| print("WTFFFFFF 1") | |
| video = [image] | |
| condition = True | |
| else: | |
| condition=False | |
| if condition: | |
| print("WTFFFFFF 2") | |
| condition1 = LTXVideoCondition(video=video, frame_index=0) | |
| else: | |
| condition1 = None | |
| latents = pipe( | |
| conditions=condition1, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=downscaled_width, | |
| height=downscaled_height, | |
| num_frames=num_frames, | |
| num_inference_steps=steps, | |
| decode_timestep = 0.05, | |
| decode_noise_scale = 0.025, | |
| guidance_scale=guidance_scale, | |
| generator=torch.Generator(device="cuda").manual_seed(seed), | |
| output_type="latent", | |
| ).frames | |
| # Part 2. Upscale generated video using latent upsampler with fewer inference steps | |
| # The available latent upsampler upscales the height/width by 2x | |
| if improve_texture: | |
| upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2 | |
| upscaled_latents = pipe_upsample( | |
| latents=latents, | |
| output_type="latent" | |
| ).frames | |
| # Part 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended) | |
| video = pipe( | |
| conditions=condition1, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=upscaled_width, | |
| height=upscaled_height, | |
| num_frames=num_frames, | |
| guidance_scale=guidance_scale, | |
| denoise_strength=0.6, # Effectively, 0.6 * 3 inference steps | |
| num_inference_steps=3, | |
| latents=upscaled_latents, | |
| decode_timestep=0.05, | |
| image_cond_noise_scale=0.025, | |
| generator=torch.Generator().manual_seed(seed), | |
| output_type="pil", | |
| ).frames[0] | |
| else: | |
| upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2 | |
| video = pipe_upsample( | |
| latents=latents, | |
| # output_type="latent" | |
| ).frames[0] | |
| # Part 4. Downscale the video to the expected resolution | |
| video = [frame.resize((expected_width, expected_height)) for frame in video] | |
| export_to_video(video, "output.mp4", fps=24) | |
| return "output.mp4" | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 900px; | |
| } | |
| """ | |
| js_func = """ | |
| function refresh() { | |
| const url = new URL(window.location); | |
| if (url.searchParams.get('__theme') !== 'dark') { | |
| url.searchParams.set('__theme', 'dark'); | |
| window.location.href = url.href; | |
| } | |
| } | |
| """ | |
| with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo: | |
| gr.Markdown("# LTX Video 0.9.7 Distilled") | |
| mode = gr.State(value="text-to-video") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Group(): | |
| with gr.Tab("text-to-video") as text_tab: | |
| image_n = gr.Image(label="", visible=False) | |
| with gr.Tab("image-to-video") as image_tab: | |
| image = gr.Image(label="input image") | |
| with gr.Tab("video-to-video") as video_tab: | |
| video = gr.Video(label="input video") | |
| frames_to_use = gr.Number(label="num frames to use",info="first # of frames to use from the input video", value=1) | |
| prompt = gr.Textbox(label="prompt") | |
| improve_texture = gr.Checkbox(label="improve texture", value=False, info="slows down generation") | |
| run_button = gr.Button() | |
| with gr.Column(): | |
| output = gr.Video(interactive=False) | |
| with gr.Accordion("Advanced settings", open=False): | |
| negative_prompt = gr.Textbox(label="negative prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", visible=False) | |
| with gr.Row(): | |
| seed = gr.Number(label="seed", value=0, precision=0) | |
| randomize_seed = gr.Checkbox(label="randomize seed") | |
| with gr.Row(): | |
| guidance_scale= gr.Slider(label="guidance scale", minimum=0, maximum=10, value=3, step=1) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=30, value=8, step=1) | |
| num_frames = gr.Slider(label="# frames", minimum=1, maximum=161, value=96, step=1) | |
| with gr.Row(): | |
| height = gr.Slider(label="height", value=512, step=1, maximum=2048) | |
| width = gr.Slider(label="width", value=704, step=1, maximum=2048) | |
| text_tab.select(fn=change_mode_to_text, inputs=[], outputs=[mode]) | |
| image_tab.select(fn=change_mode_to_image, inputs=[], outputs=[mode]) | |
| video_tab.select(fn=change_mode_to_video, inputs=[], outputs=[mode]) | |
| run_button.click(fn=generate, | |
| inputs=[prompt, | |
| negative_prompt, | |
| image, | |
| video, | |
| height, | |
| width, | |
| mode, | |
| steps, | |
| num_frames, | |
| frames_to_use, | |
| seed, | |
| randomize_seed,guidance_scale, improve_texture], | |
| outputs=[output]) | |
| demo.launch() | |
 
			

