Wirayudhia
commited on
Commit
·
3d3ee76
1
Parent(s):
77d2135
initial
Browse files- README.md +130 -11
- app.py +317 -0
- app_config.yaml +22 -0
- requirements.txt +8 -0
README.md
CHANGED
@@ -1,13 +1,132 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
|
|
|
1 |
+
# 🚀 Gemma-3 Multimodal Chat Application
|
2 |
+
|
3 |
+
A sophisticated Gradio-based chat application featuring multimodal capabilities with Google's Gemma-3 model (placeholder implementation).
|
4 |
+
|
5 |
+
## ✨ Features
|
6 |
+
|
7 |
+
- 💬 **Interactive Chat Interface**: Persistent conversation history with context awareness
|
8 |
+
- 🖼️ **Vision Capabilities**: Upload and analyze images with AI-powered insights
|
9 |
+
- 📄 **File Processing**: Support for PDF and TXT file uploads with text extraction
|
10 |
+
- 🧠 **Contextual Responses**: Maintains conversation context for follow-up questions
|
11 |
+
- 🎨 **Modern UI**: Clean, responsive interface built with Gradio
|
12 |
+
- 🔄 **State Management**: Persistent chat history and file context across interactions
|
13 |
+
|
14 |
+
## 🛠️ Technologies Used
|
15 |
+
|
16 |
+
- **Frontend**: Gradio 4.0+
|
17 |
+
- **AI Model**: Gemma-3 (placeholder implementation)
|
18 |
+
- **File Processing**: PyPDF2 for PDFs, PIL for images
|
19 |
+
- **Backend**: Python with Hugging Face Transformers
|
20 |
+
- **Deployment**: Hugging Face Spaces
|
21 |
+
|
22 |
+
## 🚀 Quick Start
|
23 |
+
|
24 |
+
### Local Development
|
25 |
+
|
26 |
+
1. **Clone the repository**:
|
27 |
+
```bash
|
28 |
+
git clone <repository-url>
|
29 |
+
cd gemma
|
30 |
+
```
|
31 |
+
|
32 |
+
2. **Install dependencies**:
|
33 |
+
```bash
|
34 |
+
pip install -r requirements.txt
|
35 |
+
```
|
36 |
+
|
37 |
+
3. **Run the application**:
|
38 |
+
```bash
|
39 |
+
python app.py
|
40 |
+
```
|
41 |
+
|
42 |
+
4. **Open your browser** and navigate to `http://localhost:7860`
|
43 |
+
|
44 |
+
### Hugging Face Spaces Deployment
|
45 |
+
|
46 |
+
1. Create a new Space on [Hugging Face Spaces](https://huggingface.co/spaces)
|
47 |
+
2. Choose "Gradio" as the SDK
|
48 |
+
3. Upload the files from this repository
|
49 |
+
4. The app will automatically deploy and be accessible via your Space URL
|
50 |
+
|
51 |
+
## 📖 How to Use
|
52 |
+
|
53 |
+
### Basic Chat
|
54 |
+
1. Type your message in the text input box
|
55 |
+
2. Click "Submit" or press Enter
|
56 |
+
3. View the AI response in the chat history
|
57 |
+
|
58 |
+
### Image Analysis
|
59 |
+
1. Upload an image using the image upload component
|
60 |
+
2. Type a question about the image (e.g., "What do you see in this image?")
|
61 |
+
3. Submit to get AI-powered image analysis
|
62 |
+
|
63 |
+
### File Processing
|
64 |
+
1. Upload a PDF or TXT file using the file upload component
|
65 |
+
2. Ask questions about the file content
|
66 |
+
3. The extracted text will be used as context for responses
|
67 |
+
|
68 |
+
### Advanced Features
|
69 |
+
- **Persistent Context**: Previous conversations are remembered
|
70 |
+
- **File Context**: Uploaded file content persists for follow-up questions
|
71 |
+
- **Clear Chat**: Reset conversation history and uploaded files
|
72 |
+
|
73 |
+
## 🔧 Configuration
|
74 |
+
|
75 |
+
### Model Configuration
|
76 |
+
The application currently uses a placeholder for Gemma-3. To integrate the actual model:
|
77 |
+
|
78 |
+
1. Replace the `gemma_3_placeholder_inference` function in `app.py`
|
79 |
+
2. Add proper model loading and inference logic
|
80 |
+
3. Update dependencies if needed
|
81 |
+
|
82 |
+
### Customization
|
83 |
+
- Modify the UI theme in the `gr.Blocks` configuration
|
84 |
+
- Adjust file size limits and supported formats
|
85 |
+
- Customize the chat history display format
|
86 |
+
- Add additional file processing capabilities
|
87 |
+
|
88 |
+
## 📁 Project Structure
|
89 |
+
|
90 |
+
```
|
91 |
+
gemma/
|
92 |
+
├── app.py # Main Gradio application
|
93 |
+
├── requirements.txt # Python dependencies
|
94 |
+
├── README.md # Project documentation
|
95 |
+
└── .gitattributes # Git configuration
|
96 |
+
```
|
97 |
+
|
98 |
+
## 🔮 Future Enhancements
|
99 |
+
|
100 |
+
- [ ] Integration with actual Gemma-3 model
|
101 |
+
- [ ] Support for additional file formats (DOCX, XLSX)
|
102 |
+
- [ ] Advanced image processing capabilities
|
103 |
+
- [ ] User authentication and personalized chat history
|
104 |
+
- [ ] Export chat conversations
|
105 |
+
- [ ] Multi-language support
|
106 |
+
- [ ] Voice input/output capabilities
|
107 |
+
|
108 |
+
## 🤝 Contributing
|
109 |
+
|
110 |
+
1. Fork the repository
|
111 |
+
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
|
112 |
+
3. Commit your changes (`git commit -m 'Add amazing feature'`)
|
113 |
+
4. Push to the branch (`git push origin feature/amazing-feature`)
|
114 |
+
5. Open a Pull Request
|
115 |
+
|
116 |
+
## 📄 License
|
117 |
+
|
118 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
119 |
+
|
120 |
+
## 🙏 Acknowledgments
|
121 |
+
|
122 |
+
- Google for the Gemma model family
|
123 |
+
- Hugging Face for the amazing ecosystem and Spaces platform
|
124 |
+
- Gradio team for the intuitive UI framework
|
125 |
+
|
126 |
+
## 📞 Support
|
127 |
+
|
128 |
+
If you encounter any issues or have questions, please open an issue on the repository or contact the maintainers.
|
129 |
+
|
130 |
---
|
131 |
|
132 |
+
**Note**: This application currently uses a placeholder implementation for Gemma-3. Replace the placeholder functions with actual model integration when the model becomes available.
|
app.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from PIL import Image
|
4 |
+
import tempfile
|
5 |
+
import PyPDF2
|
6 |
+
import io
|
7 |
+
from typing import List, Tuple, Optional
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
+
import torch
|
10 |
+
|
11 |
+
# Global variables for model and tokenizer
|
12 |
+
model = None
|
13 |
+
tokenizer = None
|
14 |
+
|
15 |
+
def load_gemma_model():
|
16 |
+
"""
|
17 |
+
Load Gemma model and tokenizer from Hugging Face.
|
18 |
+
"""
|
19 |
+
global model, tokenizer
|
20 |
+
try:
|
21 |
+
model_name = "google/gemma-2-2b-it" # Using Gemma-2 as it's available
|
22 |
+
print(f"Loading {model_name}...")
|
23 |
+
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_name,
|
27 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
28 |
+
device_map="auto" if torch.cuda.is_available() else None
|
29 |
+
)
|
30 |
+
|
31 |
+
# Add padding token if it doesn't exist
|
32 |
+
if tokenizer.pad_token is None:
|
33 |
+
tokenizer.pad_token = tokenizer.eos_token
|
34 |
+
|
35 |
+
print("Model loaded successfully!")
|
36 |
+
return True
|
37 |
+
except Exception as e:
|
38 |
+
print(f"Error loading model: {e}")
|
39 |
+
return False
|
40 |
+
|
41 |
+
def gemma_3_inference(prompt_text: str, pil_image: Optional[Image.Image] = None, chat_history: Optional[List[Tuple[str, str]]] = None) -> str:
|
42 |
+
"""
|
43 |
+
Real Gemma model inference function.
|
44 |
+
"""
|
45 |
+
global model, tokenizer
|
46 |
+
|
47 |
+
# Load model if not already loaded
|
48 |
+
if model is None or tokenizer is None:
|
49 |
+
if not load_gemma_model():
|
50 |
+
return "❌ Error: Could not load Gemma model. Please check your internet connection and try again."
|
51 |
+
|
52 |
+
try:
|
53 |
+
# Build conversation context
|
54 |
+
conversation = []
|
55 |
+
|
56 |
+
# Add chat history for context (last 3 exchanges)
|
57 |
+
if chat_history:
|
58 |
+
for user_msg, bot_msg in chat_history[-3:]:
|
59 |
+
conversation.append({"role": "user", "content": user_msg})
|
60 |
+
conversation.append({"role": "assistant", "content": bot_msg})
|
61 |
+
|
62 |
+
# Handle image input (note: Gemma-2 doesn't have native vision, so we'll describe the limitation)
|
63 |
+
if pil_image:
|
64 |
+
prompt_text = f"[Image uploaded - Note: This model doesn't have vision capabilities, but I can help with text-based questions about images] {prompt_text}"
|
65 |
+
|
66 |
+
# Add current user message
|
67 |
+
conversation.append({"role": "user", "content": prompt_text})
|
68 |
+
|
69 |
+
# Format conversation for Gemma
|
70 |
+
formatted_prompt = tokenizer.apply_chat_template(
|
71 |
+
conversation,
|
72 |
+
tokenize=False,
|
73 |
+
add_generation_prompt=True
|
74 |
+
)
|
75 |
+
|
76 |
+
# Tokenize input
|
77 |
+
inputs = tokenizer(
|
78 |
+
formatted_prompt,
|
79 |
+
return_tensors="pt",
|
80 |
+
truncation=True,
|
81 |
+
max_length=2048
|
82 |
+
)
|
83 |
+
|
84 |
+
# Move to same device as model
|
85 |
+
if torch.cuda.is_available() and model.device.type == 'cuda':
|
86 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
87 |
+
|
88 |
+
# Generate response
|
89 |
+
with torch.no_grad():
|
90 |
+
outputs = model.generate(
|
91 |
+
**inputs,
|
92 |
+
max_new_tokens=512,
|
93 |
+
temperature=0.7,
|
94 |
+
do_sample=True,
|
95 |
+
pad_token_id=tokenizer.eos_token_id,
|
96 |
+
eos_token_id=tokenizer.eos_token_id
|
97 |
+
)
|
98 |
+
|
99 |
+
# Decode response
|
100 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
101 |
+
|
102 |
+
# Extract only the new generated part
|
103 |
+
response = response[len(formatted_prompt):].strip()
|
104 |
+
|
105 |
+
return f"🤖 Gemma Response: {response}"
|
106 |
+
|
107 |
+
except Exception as e:
|
108 |
+
return f"❌ Error generating response: {str(e)}. Please try again."
|
109 |
+
|
110 |
+
def extract_text_from_pdf(file_path: str) -> str:
|
111 |
+
"""
|
112 |
+
Extract text from PDF file using PyPDF2.
|
113 |
+
"""
|
114 |
+
try:
|
115 |
+
with open(file_path, 'rb') as file:
|
116 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
117 |
+
text = ""
|
118 |
+
for page in pdf_reader.pages:
|
119 |
+
text += page.extract_text() + "\n"
|
120 |
+
return text.strip()
|
121 |
+
except Exception as e:
|
122 |
+
return f"Error reading PDF: {str(e)}"
|
123 |
+
|
124 |
+
def extract_text_from_txt(file_path: str) -> str:
|
125 |
+
"""
|
126 |
+
Extract text from TXT file.
|
127 |
+
"""
|
128 |
+
try:
|
129 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
130 |
+
return file.read().strip()
|
131 |
+
except Exception as e:
|
132 |
+
try:
|
133 |
+
# Try with different encoding if UTF-8 fails
|
134 |
+
with open(file_path, 'r', encoding='latin-1') as file:
|
135 |
+
return file.read().strip()
|
136 |
+
except Exception as e2:
|
137 |
+
return f"Error reading text file: {str(e2)}"
|
138 |
+
|
139 |
+
def process_file_input(file_input) -> str:
|
140 |
+
"""
|
141 |
+
Process uploaded file and extract text content.
|
142 |
+
"""
|
143 |
+
if file_input is None:
|
144 |
+
return ""
|
145 |
+
|
146 |
+
file_path = file_input.name
|
147 |
+
file_extension = os.path.splitext(file_path)[1].lower()
|
148 |
+
|
149 |
+
if file_extension == '.pdf':
|
150 |
+
extracted_text = extract_text_from_pdf(file_path)
|
151 |
+
return f"📄 Content from PDF ({os.path.basename(file_path)}):\n{extracted_text[:1000]}{'...' if len(extracted_text) > 1000 else ''}"
|
152 |
+
elif file_extension == '.txt':
|
153 |
+
extracted_text = extract_text_from_txt(file_path)
|
154 |
+
return f"📝 Content from text file ({os.path.basename(file_path)}):\n{extracted_text[:1000]}{'...' if len(extracted_text) > 1000 else ''}"
|
155 |
+
else:
|
156 |
+
return f"❌ Unsupported file type: {file_extension}. Please upload PDF or TXT files only."
|
157 |
+
|
158 |
+
def process_input(user_text: str, image_input: Optional[Image.Image], file_input, chat_history: List[Tuple[str, str]], file_context: str) -> Tuple[List[Tuple[str, str]], str, None, None, str]:
|
159 |
+
"""
|
160 |
+
Main function to process user input and generate response.
|
161 |
+
Returns: (updated_chat_history, cleared_text, cleared_image, cleared_file, updated_file_context)
|
162 |
+
"""
|
163 |
+
if not user_text.strip() and image_input is None and file_input is None:
|
164 |
+
return chat_history, "", None, None, file_context
|
165 |
+
|
166 |
+
# Process file input if provided
|
167 |
+
current_file_context = ""
|
168 |
+
if file_input is not None:
|
169 |
+
current_file_context = process_file_input(file_input)
|
170 |
+
|
171 |
+
# Combine file context with user text
|
172 |
+
combined_prompt = ""
|
173 |
+
if current_file_context:
|
174 |
+
combined_prompt = f"{current_file_context}\n\nUser Query: {user_text}"
|
175 |
+
# Update persistent file context
|
176 |
+
file_context = current_file_context
|
177 |
+
elif file_context and user_text.strip(): # Use previous file context if available
|
178 |
+
combined_prompt = f"{file_context}\n\nUser Query: {user_text}"
|
179 |
+
else:
|
180 |
+
combined_prompt = user_text
|
181 |
+
|
182 |
+
# Generate response using Gemma model
|
183 |
+
if image_input is not None:
|
184 |
+
# Handle image + text input
|
185 |
+
bot_response = gemma_3_inference(combined_prompt, pil_image=image_input, chat_history=chat_history)
|
186 |
+
user_display = f"{user_text} [Image uploaded]"
|
187 |
+
else:
|
188 |
+
# Handle text-only input (potentially with file context)
|
189 |
+
bot_response = gemma_3_inference(combined_prompt, chat_history=chat_history)
|
190 |
+
if current_file_context:
|
191 |
+
user_display = f"{user_text} [File: {os.path.basename(file_input.name) if file_input else 'Unknown'}]"
|
192 |
+
else:
|
193 |
+
user_display = user_text
|
194 |
+
|
195 |
+
# Update chat history
|
196 |
+
chat_history.append((user_display, bot_response))
|
197 |
+
|
198 |
+
# Return updated history and clear inputs
|
199 |
+
return chat_history, "", None, None, file_context if current_file_context else file_context
|
200 |
+
|
201 |
+
def clear_chat(chat_history: List[Tuple[str, str]], file_context: str) -> Tuple[List[Tuple[str, str]], str, None, None, str]:
|
202 |
+
"""
|
203 |
+
Clear chat history and reset all inputs.
|
204 |
+
"""
|
205 |
+
return [], "", None, None, ""
|
206 |
+
|
207 |
+
# Create Gradio interface
|
208 |
+
with gr.Blocks(title="Gemma-3 Multimodal Chat", theme=gr.themes.Soft()) as demo:
|
209 |
+
gr.Markdown(
|
210 |
+
"""
|
211 |
+
# 🚀 Gemma-2 Multimodal Chat Application
|
212 |
+
|
213 |
+
Welcome to the sophisticated Gemma-2 chat interface powered by Google's Gemma-2-2B-IT model! This application supports:
|
214 |
+
- 💬 **Text conversations** with persistent chat history
|
215 |
+
- 🖼️ **File processing** - upload PDF or TXT files for context
|
216 |
+
- 📄 **Document analysis** - extract and analyze text from uploaded files
|
217 |
+
- 🧠 **Contextual responses** - the model remembers your conversation
|
218 |
+
|
219 |
+
**How to use:**
|
220 |
+
1. Type your message in the text box
|
221 |
+
2. Optionally upload a file (PDF/TXT) for document analysis
|
222 |
+
3. Click Submit or press Enter
|
223 |
+
4. Use Clear to reset the conversation
|
224 |
+
|
225 |
+
*Note: This application uses the real Gemma-2-2B-IT model from Hugging Face. First message may take longer as the model loads.*
|
226 |
+
"""
|
227 |
+
)
|
228 |
+
|
229 |
+
# State variables
|
230 |
+
chat_history_state = gr.State([])
|
231 |
+
file_context_state = gr.State("")
|
232 |
+
|
233 |
+
with gr.Row():
|
234 |
+
with gr.Column(scale=2):
|
235 |
+
# Chat interface
|
236 |
+
chatbot = gr.Chatbot(
|
237 |
+
label="Chat History",
|
238 |
+
height=400,
|
239 |
+
show_label=True,
|
240 |
+
container=True,
|
241 |
+
bubble_full_width=False
|
242 |
+
)
|
243 |
+
|
244 |
+
# Input area
|
245 |
+
with gr.Row():
|
246 |
+
user_input = gr.Textbox(
|
247 |
+
label="Your message",
|
248 |
+
placeholder="Type your message here...",
|
249 |
+
lines=2,
|
250 |
+
scale=4
|
251 |
+
)
|
252 |
+
submit_btn = gr.Button("Submit", variant="primary", scale=1)
|
253 |
+
|
254 |
+
# Clear button
|
255 |
+
clear_btn = gr.Button("🗑️ Clear Chat", variant="secondary")
|
256 |
+
|
257 |
+
with gr.Column(scale=1):
|
258 |
+
# File upload area
|
259 |
+
gr.Markdown("### 📎 Upload Content")
|
260 |
+
|
261 |
+
image_input = gr.Image(
|
262 |
+
label="Upload Image (for vision tasks)",
|
263 |
+
type="pil",
|
264 |
+
height=200
|
265 |
+
)
|
266 |
+
|
267 |
+
file_input = gr.File(
|
268 |
+
label="Upload File (PDF or TXT)",
|
269 |
+
file_types=[".pdf", ".txt"],
|
270 |
+
height=100
|
271 |
+
)
|
272 |
+
|
273 |
+
gr.Markdown(
|
274 |
+
"""
|
275 |
+
**Tips:**
|
276 |
+
- Upload either an image OR a file per message
|
277 |
+
- PDF files will have their text extracted
|
278 |
+
- File content persists as context for follow-up questions
|
279 |
+
- Images are processed with vision capabilities
|
280 |
+
"""
|
281 |
+
)
|
282 |
+
|
283 |
+
# Event handlers
|
284 |
+
submit_btn.click(
|
285 |
+
fn=process_input,
|
286 |
+
inputs=[user_input, image_input, file_input, chat_history_state, file_context_state],
|
287 |
+
outputs=[chatbot, user_input, image_input, file_input, file_context_state]
|
288 |
+
).then(
|
289 |
+
lambda: gr.update(value=chat_history_state.value),
|
290 |
+
outputs=[chat_history_state]
|
291 |
+
)
|
292 |
+
|
293 |
+
user_input.submit(
|
294 |
+
fn=process_input,
|
295 |
+
inputs=[user_input, image_input, file_input, chat_history_state, file_context_state],
|
296 |
+
outputs=[chatbot, user_input, image_input, file_input, file_context_state]
|
297 |
+
).then(
|
298 |
+
lambda: gr.update(value=chat_history_state.value),
|
299 |
+
outputs=[chat_history_state]
|
300 |
+
)
|
301 |
+
|
302 |
+
clear_btn.click(
|
303 |
+
fn=clear_chat,
|
304 |
+
inputs=[chat_history_state, file_context_state],
|
305 |
+
outputs=[chatbot, user_input, image_input, file_input, file_context_state]
|
306 |
+
).then(
|
307 |
+
lambda: gr.update(value=[]),
|
308 |
+
outputs=[chat_history_state]
|
309 |
+
)
|
310 |
+
|
311 |
+
if __name__ == "__main__":
|
312 |
+
demo.launch(
|
313 |
+
server_name="0.0.0.0",
|
314 |
+
server_port=7860,
|
315 |
+
share=True,
|
316 |
+
show_error=True
|
317 |
+
)
|
app_config.yaml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
title: Gemma-3 Multimodal Chat
|
2 |
+
emoji: 🚀
|
3 |
+
colorFrom: blue
|
4 |
+
colorTo: purple
|
5 |
+
sdk: gradio
|
6 |
+
sdk_version: 4.0.0
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
9 |
+
license: mit
|
10 |
+
short_description: A sophisticated multimodal chat application with vision and file processing capabilities
|
11 |
+
tags:
|
12 |
+
- chatbot
|
13 |
+
- multimodal
|
14 |
+
- vision
|
15 |
+
- file-processing
|
16 |
+
- gemma
|
17 |
+
- gradio
|
18 |
+
python_version: 3.9
|
19 |
+
models:
|
20 |
+
- google/gemma-2b-it
|
21 |
+
hardware: cpu-basic
|
22 |
+
suggested_storage: small
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
Pillow>=9.0.0
|
3 |
+
PyPDF2>=3.0.0
|
4 |
+
transformers>=4.30.0
|
5 |
+
huggingface-hub>=0.16.0
|
6 |
+
torch>=2.0.0
|
7 |
+
numpy>=1.21.0
|
8 |
+
requests>=2.28.0
|