File size: 9,367 Bytes
124ba77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Copyright (c) Meta Platforms, Inc. and affiliates.

# Adapted from PixLoc, Paul-Edouard Sarlin, ETH Zurich
# https://github.com/cvg/pixloc
# Released under the Apache License 2.0

"""
Flexible UNet model which takes any Torchvision backbone as encoder.
Predicts multi-level feature and makes sure that they are well aligned.
"""

import torch
import torch.nn as nn
import torchvision

from .base import BaseModel
from .utils import checkpointed


class DecoderBlock(nn.Module):
    def __init__(
        self, previous, skip, out, num_convs=1, norm=nn.BatchNorm2d, padding="zeros"
    ):
        super().__init__()

        self.upsample = nn.Upsample(
            scale_factor=2, mode="bilinear", align_corners=False
        )

        layers = []
        for i in range(num_convs):
            conv = nn.Conv2d(
                previous + skip if i == 0 else out,
                out,
                kernel_size=3,
                padding=1,
                bias=norm is None,
                padding_mode=padding,
            )
            layers.append(conv)
            if norm is not None:
                layers.append(norm(out))
            layers.append(nn.ReLU(inplace=True))
        self.layers = nn.Sequential(*layers)

    def forward(self, previous, skip):
        upsampled = self.upsample(previous)
        # If the shape of the input map `skip` is not a multiple of 2,
        # it will not match the shape of the upsampled map `upsampled`.
        # If the downsampling uses ceil_mode=False, we nedd to crop `skip`.
        # If it uses ceil_mode=True (not supported here), we should pad it.
        _, _, hu, wu = upsampled.shape
        _, _, hs, ws = skip.shape
        assert (hu <= hs) and (wu <= ws), "Using ceil_mode=True in pooling?"
        # assert (hu == hs) and (wu == ws), 'Careful about padding'
        skip = skip[:, :, :hu, :wu]
        return self.layers(torch.cat([upsampled, skip], dim=1))


class AdaptationBlock(nn.Sequential):
    def __init__(self, inp, out):
        conv = nn.Conv2d(inp, out, kernel_size=1, padding=0, bias=True)
        super().__init__(conv)


class FeatureExtractor(BaseModel):
    default_conf = {
        "pretrained": True,
        "input_dim": 3,
        "output_scales": [0, 2, 4],  # what scales to adapt and output
        "output_dim": 128,  # # of channels in output feature maps
        "encoder": "vgg16",  # string (torchvision net) or list of channels
        "num_downsample": 4,  # how many downsample block (if VGG-style net)
        "decoder": [64, 64, 64, 64],  # list of channels of decoder
        "decoder_norm": "nn.BatchNorm2d",  # normalization ind decoder blocks
        "do_average_pooling": False,
        "checkpointed": False,  # whether to use gradient checkpointing
        "padding": "zeros",
    }
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]

    def build_encoder(self, conf):
        assert isinstance(conf.encoder, str)
        if conf.pretrained:
            assert conf.input_dim == 3
        Encoder = getattr(torchvision.models, conf.encoder)
        encoder = Encoder(weights="DEFAULT" if conf.pretrained else None)
        Block = checkpointed(torch.nn.Sequential, do=conf.checkpointed)
        assert max(conf.output_scales) <= conf.num_downsample

        if conf.encoder.startswith("vgg"):
            # Parse the layers and pack them into downsampling blocks
            # It's easy for VGG-style nets because of their linear structure.
            # This does not handle strided convs and residual connections
            skip_dims = []
            previous_dim = None
            blocks = [[]]
            for i, layer in enumerate(encoder.features):
                if isinstance(layer, torch.nn.Conv2d):
                    # Change the first conv layer if the input dim mismatches
                    if i == 0 and conf.input_dim != layer.in_channels:
                        args = {k: getattr(layer, k) for k in layer.__constants__}
                        args.pop("output_padding")
                        layer = torch.nn.Conv2d(
                            **{**args, "in_channels": conf.input_dim}
                        )
                    previous_dim = layer.out_channels
                elif isinstance(layer, torch.nn.MaxPool2d):
                    assert previous_dim is not None
                    skip_dims.append(previous_dim)
                    if (conf.num_downsample + 1) == len(blocks):
                        break
                    blocks.append([])  # start a new block
                    if conf.do_average_pooling:
                        assert layer.dilation == 1
                        layer = torch.nn.AvgPool2d(
                            kernel_size=layer.kernel_size,
                            stride=layer.stride,
                            padding=layer.padding,
                            ceil_mode=layer.ceil_mode,
                            count_include_pad=False,
                        )
                blocks[-1].append(layer)
            encoder = [Block(*b) for b in blocks]
        elif conf.encoder.startswith("resnet"):
            # Manually define the ResNet blocks such that the downsampling comes first
            assert conf.encoder[len("resnet") :] in ["18", "34", "50", "101"]
            assert conf.input_dim == 3, "Unsupported for now."
            block1 = torch.nn.Sequential(encoder.conv1, encoder.bn1, encoder.relu)
            block2 = torch.nn.Sequential(encoder.maxpool, encoder.layer1)
            block3 = encoder.layer2
            block4 = encoder.layer3
            block5 = encoder.layer4
            blocks = [block1, block2, block3, block4, block5]
            # Extract the output dimension of each block
            skip_dims = [encoder.conv1.out_channels]
            for i in range(1, 5):
                modules = getattr(encoder, f"layer{i}")[-1]._modules
                conv = sorted(k for k in modules if k.startswith("conv"))[-1]
                skip_dims.append(modules[conv].out_channels)
            # Add a dummy block such that the first one does not downsample
            encoder = [torch.nn.Identity()] + [Block(b) for b in blocks]
            skip_dims = [3] + skip_dims
            # Trim based on the requested encoder size
            encoder = encoder[: conf.num_downsample + 1]
            skip_dims = skip_dims[: conf.num_downsample + 1]
        else:
            raise NotImplementedError(conf.encoder)

        assert (conf.num_downsample + 1) == len(encoder)
        encoder = nn.ModuleList(encoder)

        return encoder, skip_dims

    def _init(self, conf):
        # Encoder
        self.encoder, skip_dims = self.build_encoder(conf)
        self.skip_dims = skip_dims

        def update_padding(module):
            if isinstance(module, nn.Conv2d):
                module.padding_mode = conf.padding

        if conf.padding != "zeros":
            self.encoder.apply(update_padding)

        # Decoder
        if conf.decoder is not None:
            assert len(conf.decoder) == (len(skip_dims) - 1)
            Block = checkpointed(DecoderBlock, do=conf.checkpointed)
            norm = eval(conf.decoder_norm) if conf.decoder_norm else None  # noqa

            previous = skip_dims[-1]
            decoder = []
            for out, skip in zip(conf.decoder, skip_dims[:-1][::-1]):
                decoder.append(
                    Block(previous, skip, out, norm=norm, padding=conf.padding)
                )
                previous = out
            self.decoder = nn.ModuleList(decoder)

        # Adaptation layers
        adaptation = []
        for idx, i in enumerate(conf.output_scales):
            if conf.decoder is None or i == (len(self.encoder) - 1):
                input_ = skip_dims[i]
            else:
                input_ = conf.decoder[-1 - i]

            # out_dim can be an int (same for all scales) or a list (per scale)
            dim = conf.output_dim
            if not isinstance(dim, int):
                dim = dim[idx]

            block = AdaptationBlock(input_, dim)
            adaptation.append(block)
        self.adaptation = nn.ModuleList(adaptation)
        self.scales = [2**s for s in conf.output_scales]

    def _forward(self, data):
        image = data["image"]
        if self.conf.pretrained:
            mean, std = image.new_tensor(self.mean), image.new_tensor(self.std)
            image = (image - mean[:, None, None]) / std[:, None, None]

        skip_features = []
        features = image
        for block in self.encoder:
            features = block(features)
            skip_features.append(features)

        if self.conf.decoder:
            pre_features = [skip_features[-1]]
            for block, skip in zip(self.decoder, skip_features[:-1][::-1]):
                pre_features.append(block(pre_features[-1], skip))
            pre_features = pre_features[::-1]  # fine to coarse
        else:
            pre_features = skip_features

        out_features = []
        for adapt, i in zip(self.adaptation, self.conf.output_scales):
            out_features.append(adapt(pre_features[i]))
        pred = {"feature_maps": out_features, "skip_features": skip_features}
        return pred

    def loss(self, pred, data):
        raise NotImplementedError

    def metrics(self, pred, data):
        raise NotImplementedError