MapLocNetGradio / train.py
wangerniu
maplocnet
629144d
raw
history blame
7.59 kB
import os.path as osp
import warnings
warnings.filterwarnings('ignore')
from typing import Optional
from pathlib import Path
from models.maplocnet import MapLocNet
import hydra
import pytorch_lightning as pl
import torch
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.utilities import rank_zero_only
from module import GenericModule
from logger import logger, pl_logger, EXPERIMENTS_PATH
from module import GenericModule
from dataset import UavMapDatasetModule
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
# print(osp.join(osp.dirname(__file__), "conf"))
class CleanProgressBar(pl.callbacks.TQDMProgressBar):
def get_metrics(self, trainer, model):
items = super().get_metrics(trainer, model)
items.pop("v_num", None) # don't show the version number
items.pop("loss", None)
return items
class SeedingCallback(pl.callbacks.Callback):
def on_epoch_start_(self, trainer, module):
seed = module.cfg.experiment.seed
is_overfit = module.cfg.training.trainer.get("overfit_batches", 0) > 0
if trainer.training and not is_overfit:
seed = seed + trainer.current_epoch
# Temporarily disable the logging (does not seem to work?)
pl_logger.disabled = True
try:
pl.seed_everything(seed, workers=True)
finally:
pl_logger.disabled = False
def on_train_epoch_start(self, *args, **kwargs):
self.on_epoch_start_(*args, **kwargs)
def on_validation_epoch_start(self, *args, **kwargs):
self.on_epoch_start_(*args, **kwargs)
def on_test_epoch_start(self, *args, **kwargs):
self.on_epoch_start_(*args, **kwargs)
class ConsoleLogger(pl.callbacks.Callback):
@rank_zero_only
def on_train_epoch_start(self, trainer, module):
logger.info(
"New training epoch %d for experiment '%s'.",
module.current_epoch,
module.cfg.experiment.name,
)
# @rank_zero_only
# def on_validation_epoch_end(self, trainer, module):
# results = {
# **dict(module.metrics_val.items()),
# **dict(module.losses_val.items()),
# }
# results = [f"{k} {v.compute():.3E}" for k, v in results.items()]
# logger.info(f'[Validation] {{{", ".join(results)}}}')
def find_last_checkpoint_path(experiment_dir):
cls = pl.callbacks.ModelCheckpoint
path = osp.join(experiment_dir, cls.CHECKPOINT_NAME_LAST + cls.FILE_EXTENSION)
if osp.exists(path):
return path
else:
return None
def prepare_experiment_dir(experiment_dir, cfg, rank):
config_path = osp.join(experiment_dir, "config.yaml")
last_checkpoint_path = find_last_checkpoint_path(experiment_dir)
if last_checkpoint_path is not None:
if rank == 0:
logger.info(
"Resuming the training from checkpoint %s", last_checkpoint_path
)
if osp.exists(config_path):
with open(config_path, "r") as fp:
cfg_prev = OmegaConf.create(fp.read())
compare_keys = ["experiment", "data", "model", "training"]
if OmegaConf.masked_copy(cfg, compare_keys) != OmegaConf.masked_copy(
cfg_prev, compare_keys
):
raise ValueError(
"Attempting to resume training with a different config: "
f"{OmegaConf.masked_copy(cfg, compare_keys)} vs "
f"{OmegaConf.masked_copy(cfg_prev, compare_keys)}"
)
if rank == 0:
Path(experiment_dir).mkdir(exist_ok=True, parents=True)
with open(config_path, "w") as fp:
OmegaConf.save(cfg, fp)
return last_checkpoint_path
def train(cfg: DictConfig) -> None:
torch.set_float32_matmul_precision("medium")
OmegaConf.resolve(cfg)
rank = rank_zero_only.rank
if rank == 0:
logger.info("Starting training with config:\n%s", OmegaConf.to_yaml(cfg))
if cfg.experiment.gpus in (None, 0):
logger.warning("Will train on CPU...")
cfg.experiment.gpus = 0
elif not torch.cuda.is_available():
raise ValueError("Requested GPU but no NVIDIA drivers found.")
pl.seed_everything(cfg.experiment.seed, workers=True)
init_checkpoint_path = cfg.training.get("finetune_from_checkpoint")
if init_checkpoint_path is not None:
logger.info("Initializing the model from checkpoint %s.", init_checkpoint_path)
model = GenericModule.load_from_checkpoint(
init_checkpoint_path, strict=True, find_best=False, cfg=cfg
)
else:
model = GenericModule(cfg)
if rank == 0:
logger.info("Network:\n%s", model.model)
experiment_dir = osp.join(EXPERIMENTS_PATH, cfg.experiment.name)
last_checkpoint_path = prepare_experiment_dir(experiment_dir, cfg, rank)
checkpointing_epoch = pl.callbacks.ModelCheckpoint(
dirpath=experiment_dir,
filename="checkpoint-epoch-{epoch:02d}-loss-{loss/total/val:02f}",
auto_insert_metric_name=False,
save_last=True,
every_n_epochs=1,
save_on_train_epoch_end=True,
verbose=True,
**cfg.training.checkpointing,
)
checkpointing_step = pl.callbacks.ModelCheckpoint(
dirpath=experiment_dir,
filename="checkpoint-step-{step}-{loss/total/val:02f}",
auto_insert_metric_name=False,
save_last=True,
every_n_train_steps=1000,
verbose=True,
**cfg.training.checkpointing,
)
checkpointing_step.CHECKPOINT_NAME_LAST = "last-step-checkpointing"
# 创建 EarlyStopping 回调
early_stopping_callback = EarlyStopping(monitor=cfg.training.checkpointing.monitor, patience=5)
strategy = None
if cfg.experiment.gpus > 1:
strategy = pl.strategies.DDPStrategy(find_unused_parameters=False)
for split in ["train", "val"]:
cfg.data[split].batch_size = (
cfg.data[split].batch_size // cfg.experiment.gpus
)
cfg.data[split].num_workers = int(
(cfg.data[split].num_workers + cfg.experiment.gpus - 1)
/ cfg.experiment.gpus
)
# data = data_modules[cfg.data.get("name", "mapillary")](cfg.data)
datamodule =UavMapDatasetModule(cfg.data)
tb_args = {"name": cfg.experiment.name, "version": ""}
tb = pl.loggers.TensorBoardLogger(EXPERIMENTS_PATH, **tb_args)
callbacks = [
checkpointing_epoch,
checkpointing_step,
# early_stopping_callback,
pl.callbacks.LearningRateMonitor(),
SeedingCallback(),
CleanProgressBar(),
ConsoleLogger(),
]
if cfg.experiment.gpus > 0:
callbacks.append(pl.callbacks.DeviceStatsMonitor())
trainer = pl.Trainer(
default_root_dir=experiment_dir,
detect_anomaly=False,
# strategy=ddp_find_unused_parameters_true,
enable_model_summary=True,
sync_batchnorm=True,
enable_checkpointing=True,
logger=tb,
callbacks=callbacks,
strategy=strategy,
check_val_every_n_epoch=1,
accelerator="gpu",
num_nodes=1,
**cfg.training.trainer,
)
trainer.fit(model=model, datamodule=datamodule, ckpt_path=last_checkpoint_path)
@hydra.main(
config_path=osp.join(osp.dirname(__file__), "conf"), config_name="maplocnet.yaml"
)
def main(cfg: DictConfig) -> None:
OmegaConf.save(config=cfg, f='maplocnet.yaml')
train(cfg)
if __name__ == "__main__":
main()