Spaces:
Running
Running
wangerniu
commited on
Commit
·
b7f7c83
1
Parent(s):
629144d
main
Browse files
app.py
CHANGED
@@ -1,7 +1,98 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
import requests
|
7 |
+
from PIL import Image
|
8 |
+
from demo import Demo,read_input_image_test,show_result,vis_image_feature
|
9 |
+
from osm.tiling import TileManager
|
10 |
+
from osm.viz import Colormap, plot_nodes
|
11 |
+
from utils.viz_2d import plot_images
|
12 |
+
import numpy as np
|
13 |
+
from utils.viz_2d import features_to_RGB
|
14 |
+
from utils.viz_localization import (
|
15 |
+
likelihood_overlay,
|
16 |
+
plot_dense_rotations,
|
17 |
+
add_circle_inset,
|
18 |
+
)
|
19 |
+
from osm.viz import GeoPlotter
|
20 |
+
import matplotlib.pyplot as plt
|
21 |
+
import random
|
22 |
+
from geopy.distance import geodesic
|
23 |
+
|
24 |
+
experiment_or_path = "weight/last-step-checkpointing.ckpt"
|
25 |
+
# experiment_or_path="experiments/maplocanet_0906_diffhight/last-step-checkpointing.ckpt"
|
26 |
+
image_path = 'images/00000.jpg'
|
27 |
+
|
28 |
+
# prior_latlon = (37.75704325989902, -122.435941445631)
|
29 |
+
# tile_size_meters = 128
|
30 |
+
model = Demo(experiment_or_path=experiment_or_path, num_rotations=128, device='cpu')
|
31 |
+
|
32 |
+
def demo_localize(image,long,lat,tile_size_meters):
|
33 |
+
# inp = Image.fromarray(inp.astype('uint8'), 'RGB')
|
34 |
+
# inp = transforms.ToTensor()(inp).unsqueeze(0)
|
35 |
+
prior_latlon=(lat,long)
|
36 |
+
image, camera, gravity, proj, bbox, true_prior_latlon = read_input_image_test(
|
37 |
+
image,
|
38 |
+
prior_latlon=prior_latlon,
|
39 |
+
tile_size_meters=tile_size_meters, # try 64, 256, etc.
|
40 |
+
)
|
41 |
+
tiler = TileManager.from_bbox(projection=proj, bbox=bbox, ppm=1, tile_size=tile_size_meters)
|
42 |
+
# tiler = TileManager.from_bbox(projection=proj, bbox=bbox + 10,ppm=1,path=root/city/'{}.osm'.format(city), tile_size=1)
|
43 |
+
canvas = tiler.query(bbox)
|
44 |
+
uv, yaw, prob, neural_map, image_rectified, data_, pred = model.localize(
|
45 |
+
image, camera, canvas)
|
46 |
+
prior_latlon_pred = proj.unproject(canvas.to_xy(uv))
|
47 |
+
|
48 |
+
map_viz = Colormap.apply(canvas.raster)
|
49 |
+
map_vis_image_result = map_viz * 255
|
50 |
+
map_vis_image_result =show_result(map_vis_image_result.astype(np.uint8), uv, yaw)
|
51 |
+
# map_vis_image_result = show_result(map_vis_image_result.astype(np.uint8), True_uv,
|
52 |
+
# uv,
|
53 |
+
# 90.0 - yaw_T,
|
54 |
+
# yaw)
|
55 |
+
# return prior_latlon_pred
|
56 |
+
uab_feature_rgb = vis_image_feature(pred['features_image'][0].cpu().numpy())
|
57 |
+
map_viz = cv2.resize(map_viz, (prob.numpy().shape[0], prob.numpy().shape[1]))
|
58 |
+
overlay = likelihood_overlay(prob.numpy().max(-1), map_viz.mean(-1, keepdims=True))
|
59 |
+
(neural_map_rgb,) = features_to_RGB(neural_map.numpy())
|
60 |
+
fig=plot_images([image, map_vis_image_result / 255, overlay, uab_feature_rgb, neural_map_rgb],
|
61 |
+
titles=["UAV image", "map","likelihood","UAV feature","map feature"])
|
62 |
+
# plot_images([overlay, neural_map_rgb], titles=["prediction", "neural map"])
|
63 |
+
# ax = plt.gcf().axes[2]
|
64 |
+
# ax.scatter(*canvas.to_uv(bbox.center), s=5, c="red")
|
65 |
+
# plot_dense_rotations(ax, prob, w=0.005, s=1 / 25)
|
66 |
+
# add_circle_inset(ax, uv)
|
67 |
|
68 |
+
# Plot as interactive figure
|
69 |
+
bbox_latlon = proj.unproject(canvas.bbox)
|
70 |
+
plot2 = GeoPlotter(zoom=16.5)
|
71 |
+
plot2.raster(map_viz, bbox_latlon, opacity=0.5)
|
72 |
+
plot2.raster(likelihood_overlay(prob.numpy().max(-1)), proj.unproject(bbox))
|
73 |
+
plot2.points(prior_latlon[:2], "red", name="location prior", size=10)
|
74 |
+
plot2.points(proj.unproject(canvas.to_xy(uv)), "black", name="argmax", size=10)
|
75 |
+
plot2.bbox(bbox_latlon, "blue", name="map tile")
|
76 |
+
# plot2.fig.show()
|
77 |
+
return fig,plot2.fig,str(prior_latlon_pred)
|
78 |
+
# model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
|
79 |
+
#标题
|
80 |
+
title = "MapLocNet"
|
81 |
+
#标题下的描述,支持md格式
|
82 |
+
description = "UAV Vision-based Geo-Localization Using Vectorized Maps"
|
83 |
|
84 |
+
# outputs = gr.outputs.Label(num_top_classes=3)
|
85 |
+
outputs = gr.Plot()
|
86 |
+
interface = gr.Interface(fn=demo_localize,
|
87 |
+
inputs=["image",
|
88 |
+
gr.Number(label="Prior location-longitude)"),
|
89 |
+
gr.Number(label="Prior location-longitude)"),
|
90 |
+
gr.Radio([64, 128, 256], label="Search radius (meters)", info="vectorized map size"),
|
91 |
+
# gr.inputs.RadioGroup(label="Search radius (meters)",["English", "French", "Spanish"]),
|
92 |
+
# gr.Slider(64, 512,label='Search radius (meters)')
|
93 |
+
],
|
94 |
+
outputs=["plot","plot","text"],
|
95 |
+
title=title,
|
96 |
+
description=description,
|
97 |
+
examples=[['images/00000.jpg',-122.435941445631,37.75704325989902,128]])
|
98 |
+
interface.launch()
|