Spaces:
Sleeping
Sleeping
File size: 5,900 Bytes
c9b5796 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import timm
import numpy as np
import torch.nn as nn
from ._base import EncoderMixin
def _make_divisible(x, divisible_by=8):
return int(np.ceil(x * 1.0 / divisible_by) * divisible_by)
class MobileNetV3Encoder(nn.Module, EncoderMixin):
def __init__(self, model_name, width_mult, depth=5, **kwargs):
super().__init__()
if "large" not in model_name and "small" not in model_name:
raise ValueError("MobileNetV3 wrong model name {}".format(model_name))
self._mode = "small" if "small" in model_name else "large"
self._depth = depth
self._out_channels = self._get_channels(self._mode, width_mult)
self._in_channels = 3
# minimal models replace hardswish with relu
self.model = timm.create_model(
model_name=model_name,
scriptable=True, # torch.jit scriptable
exportable=True, # onnx export
features_only=True,
)
def _get_channels(self, mode, width_mult):
if mode == "small":
channels = [16, 16, 24, 48, 576]
else:
channels = [16, 24, 40, 112, 960]
channels = [3] + [_make_divisible(x * width_mult) for x in channels]
return tuple(channels)
def get_stages(self):
if self._mode == "small":
return [
nn.Identity(),
nn.Sequential(self.model.conv_stem, self.model.bn1, self.model.act1),
self.model.blocks[0],
self.model.blocks[1],
self.model.blocks[2:4],
self.model.blocks[4:],
]
elif self._mode == "large":
return [
nn.Identity(),
nn.Sequential(
self.model.conv_stem,
self.model.bn1,
self.model.act1,
self.model.blocks[0],
),
self.model.blocks[1],
self.model.blocks[2],
self.model.blocks[3:5],
self.model.blocks[5:],
]
else:
ValueError(
"MobileNetV3 mode should be small or large, got {}".format(self._mode)
)
def forward(self, x):
stages = self.get_stages()
features = []
for i in range(self._depth + 1):
x = stages[i](x)
features.append(x)
return features
def load_state_dict(self, state_dict, **kwargs):
state_dict.pop("conv_head.weight", None)
state_dict.pop("conv_head.bias", None)
state_dict.pop("classifier.weight", None)
state_dict.pop("classifier.bias", None)
self.model.load_state_dict(state_dict, **kwargs)
mobilenetv3_weights = {
"tf_mobilenetv3_large_075": {
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth" # noqa
},
"tf_mobilenetv3_large_100": {
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth" # noqa
},
"tf_mobilenetv3_large_minimal_100": {
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth" # noqa
},
"tf_mobilenetv3_small_075": {
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth" # noqa
},
"tf_mobilenetv3_small_100": {
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth" # noqa
},
"tf_mobilenetv3_small_minimal_100": {
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth" # noqa
},
}
pretrained_settings = {}
for model_name, sources in mobilenetv3_weights.items():
pretrained_settings[model_name] = {}
for source_name, source_url in sources.items():
pretrained_settings[model_name][source_name] = {
"url": source_url,
"input_range": [0, 1],
"mean": [0.485, 0.456, 0.406],
"std": [0.229, 0.224, 0.225],
"input_space": "RGB",
}
timm_mobilenetv3_encoders = {
"timm-mobilenetv3_large_075": {
"encoder": MobileNetV3Encoder,
"pretrained_settings": pretrained_settings["tf_mobilenetv3_large_075"],
"params": {"model_name": "tf_mobilenetv3_large_075", "width_mult": 0.75},
},
"timm-mobilenetv3_large_100": {
"encoder": MobileNetV3Encoder,
"pretrained_settings": pretrained_settings["tf_mobilenetv3_large_100"],
"params": {"model_name": "tf_mobilenetv3_large_100", "width_mult": 1.0},
},
"timm-mobilenetv3_large_minimal_100": {
"encoder": MobileNetV3Encoder,
"pretrained_settings": pretrained_settings["tf_mobilenetv3_large_minimal_100"],
"params": {"model_name": "tf_mobilenetv3_large_minimal_100", "width_mult": 1.0},
},
"timm-mobilenetv3_small_075": {
"encoder": MobileNetV3Encoder,
"pretrained_settings": pretrained_settings["tf_mobilenetv3_small_075"],
"params": {"model_name": "tf_mobilenetv3_small_075", "width_mult": 0.75},
},
"timm-mobilenetv3_small_100": {
"encoder": MobileNetV3Encoder,
"pretrained_settings": pretrained_settings["tf_mobilenetv3_small_100"],
"params": {"model_name": "tf_mobilenetv3_small_100", "width_mult": 1.0},
},
"timm-mobilenetv3_small_minimal_100": {
"encoder": MobileNetV3Encoder,
"pretrained_settings": pretrained_settings["tf_mobilenetv3_small_minimal_100"],
"params": {"model_name": "tf_mobilenetv3_small_minimal_100", "width_mult": 1.0},
},
}
|