Spaces:
Sleeping
Sleeping
| """Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` | |
| Attributes: | |
| _out_channels (list of int): specify number of channels for each encoder feature tensor | |
| _depth (int): specify number of stages in decoder (in other words number of downsampling operations) | |
| _in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) | |
| Methods: | |
| forward(self, x: torch.Tensor) | |
| produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of | |
| shape NCHW (features should be sorted in descending order according to spatial resolution, starting | |
| with resolution same as input `x` tensor). | |
| Input: `x` with shape (1, 3, 64, 64) | |
| Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes | |
| [(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), | |
| (1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) | |
| also should support number of features according to specified depth, e.g. if depth = 5, | |
| number of feature tensors = 6 (one with same resolution as input and 5 downsampled), | |
| depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). | |
| """ | |
| import re | |
| import torch.nn as nn | |
| from pretrainedmodels.models.torchvision_models import pretrained_settings | |
| from torchvision.models.densenet import DenseNet | |
| from ._base import EncoderMixin | |
| class TransitionWithSkip(nn.Module): | |
| def __init__(self, module): | |
| super().__init__() | |
| self.module = module | |
| def forward(self, x): | |
| for module in self.module: | |
| x = module(x) | |
| if isinstance(module, nn.ReLU): | |
| skip = x | |
| return x, skip | |
| class DenseNetEncoder(DenseNet, EncoderMixin): | |
| def __init__(self, out_channels, depth=5, **kwargs): | |
| super().__init__(**kwargs) | |
| self._out_channels = out_channels | |
| self._depth = depth | |
| self._in_channels = 3 | |
| del self.classifier | |
| def make_dilated(self, *args, **kwargs): | |
| raise ValueError( | |
| "DenseNet encoders do not support dilated mode " | |
| "due to pooling operation for downsampling!" | |
| ) | |
| def get_stages(self): | |
| return [ | |
| nn.Identity(), | |
| nn.Sequential( | |
| self.features.conv0, self.features.norm0, self.features.relu0 | |
| ), | |
| nn.Sequential( | |
| self.features.pool0, | |
| self.features.denseblock1, | |
| TransitionWithSkip(self.features.transition1), | |
| ), | |
| nn.Sequential( | |
| self.features.denseblock2, TransitionWithSkip(self.features.transition2) | |
| ), | |
| nn.Sequential( | |
| self.features.denseblock3, TransitionWithSkip(self.features.transition3) | |
| ), | |
| nn.Sequential(self.features.denseblock4, self.features.norm5), | |
| ] | |
| def forward(self, x): | |
| stages = self.get_stages() | |
| features = [] | |
| for i in range(self._depth + 1): | |
| x = stages[i](x) | |
| if isinstance(x, (list, tuple)): | |
| x, skip = x | |
| features.append(skip) | |
| else: | |
| features.append(x) | |
| return features | |
| def load_state_dict(self, state_dict): | |
| pattern = re.compile( | |
| r"^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$" | |
| ) | |
| for key in list(state_dict.keys()): | |
| res = pattern.match(key) | |
| if res: | |
| new_key = res.group(1) + res.group(2) | |
| state_dict[new_key] = state_dict[key] | |
| del state_dict[key] | |
| # remove linear | |
| state_dict.pop("classifier.bias", None) | |
| state_dict.pop("classifier.weight", None) | |
| super().load_state_dict(state_dict) | |
| densenet_encoders = { | |
| "densenet121": { | |
| "encoder": DenseNetEncoder, | |
| "pretrained_settings": pretrained_settings["densenet121"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1024, 1024), | |
| "num_init_features": 64, | |
| "growth_rate": 32, | |
| "block_config": (6, 12, 24, 16), | |
| }, | |
| }, | |
| "densenet169": { | |
| "encoder": DenseNetEncoder, | |
| "pretrained_settings": pretrained_settings["densenet169"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1280, 1664), | |
| "num_init_features": 64, | |
| "growth_rate": 32, | |
| "block_config": (6, 12, 32, 32), | |
| }, | |
| }, | |
| "densenet201": { | |
| "encoder": DenseNetEncoder, | |
| "pretrained_settings": pretrained_settings["densenet201"], | |
| "params": { | |
| "out_channels": (3, 64, 256, 512, 1792, 1920), | |
| "num_init_features": 64, | |
| "growth_rate": 32, | |
| "block_config": (6, 12, 48, 32), | |
| }, | |
| }, | |
| "densenet161": { | |
| "encoder": DenseNetEncoder, | |
| "pretrained_settings": pretrained_settings["densenet161"], | |
| "params": { | |
| "out_channels": (3, 96, 384, 768, 2112, 2208), | |
| "num_init_features": 96, | |
| "growth_rate": 48, | |
| "block_config": (6, 12, 36, 24), | |
| }, | |
| }, | |
| } | |