Spaces:
Sleeping
Sleeping
"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` | |
Attributes: | |
_out_channels (list of int): specify number of channels for each encoder feature tensor | |
_depth (int): specify number of stages in decoder (in other words number of downsampling operations) | |
_in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) | |
Methods: | |
forward(self, x: torch.Tensor) | |
produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of | |
shape NCHW (features should be sorted in descending order according to spatial resolution, starting | |
with resolution same as input `x` tensor). | |
Input: `x` with shape (1, 3, 64, 64) | |
Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes | |
[(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), | |
(1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) | |
also should support number of features according to specified depth, e.g. if depth = 5, | |
number of feature tensors = 6 (one with same resolution as input and 5 downsampled), | |
depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). | |
""" | |
import re | |
import torch.nn as nn | |
from pretrainedmodels.models.torchvision_models import pretrained_settings | |
from torchvision.models.densenet import DenseNet | |
from ._base import EncoderMixin | |
class TransitionWithSkip(nn.Module): | |
def __init__(self, module): | |
super().__init__() | |
self.module = module | |
def forward(self, x): | |
for module in self.module: | |
x = module(x) | |
if isinstance(module, nn.ReLU): | |
skip = x | |
return x, skip | |
class DenseNetEncoder(DenseNet, EncoderMixin): | |
def __init__(self, out_channels, depth=5, **kwargs): | |
super().__init__(**kwargs) | |
self._out_channels = out_channels | |
self._depth = depth | |
self._in_channels = 3 | |
del self.classifier | |
def make_dilated(self, *args, **kwargs): | |
raise ValueError( | |
"DenseNet encoders do not support dilated mode " | |
"due to pooling operation for downsampling!" | |
) | |
def get_stages(self): | |
return [ | |
nn.Identity(), | |
nn.Sequential( | |
self.features.conv0, self.features.norm0, self.features.relu0 | |
), | |
nn.Sequential( | |
self.features.pool0, | |
self.features.denseblock1, | |
TransitionWithSkip(self.features.transition1), | |
), | |
nn.Sequential( | |
self.features.denseblock2, TransitionWithSkip(self.features.transition2) | |
), | |
nn.Sequential( | |
self.features.denseblock3, TransitionWithSkip(self.features.transition3) | |
), | |
nn.Sequential(self.features.denseblock4, self.features.norm5), | |
] | |
def forward(self, x): | |
stages = self.get_stages() | |
features = [] | |
for i in range(self._depth + 1): | |
x = stages[i](x) | |
if isinstance(x, (list, tuple)): | |
x, skip = x | |
features.append(skip) | |
else: | |
features.append(x) | |
return features | |
def load_state_dict(self, state_dict): | |
pattern = re.compile( | |
r"^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$" | |
) | |
for key in list(state_dict.keys()): | |
res = pattern.match(key) | |
if res: | |
new_key = res.group(1) + res.group(2) | |
state_dict[new_key] = state_dict[key] | |
del state_dict[key] | |
# remove linear | |
state_dict.pop("classifier.bias", None) | |
state_dict.pop("classifier.weight", None) | |
super().load_state_dict(state_dict) | |
densenet_encoders = { | |
"densenet121": { | |
"encoder": DenseNetEncoder, | |
"pretrained_settings": pretrained_settings["densenet121"], | |
"params": { | |
"out_channels": (3, 64, 256, 512, 1024, 1024), | |
"num_init_features": 64, | |
"growth_rate": 32, | |
"block_config": (6, 12, 24, 16), | |
}, | |
}, | |
"densenet169": { | |
"encoder": DenseNetEncoder, | |
"pretrained_settings": pretrained_settings["densenet169"], | |
"params": { | |
"out_channels": (3, 64, 256, 512, 1280, 1664), | |
"num_init_features": 64, | |
"growth_rate": 32, | |
"block_config": (6, 12, 32, 32), | |
}, | |
}, | |
"densenet201": { | |
"encoder": DenseNetEncoder, | |
"pretrained_settings": pretrained_settings["densenet201"], | |
"params": { | |
"out_channels": (3, 64, 256, 512, 1792, 1920), | |
"num_init_features": 64, | |
"growth_rate": 32, | |
"block_config": (6, 12, 48, 32), | |
}, | |
}, | |
"densenet161": { | |
"encoder": DenseNetEncoder, | |
"pretrained_settings": pretrained_settings["densenet161"], | |
"params": { | |
"out_channels": (3, 96, 384, 768, 2112, 2208), | |
"num_init_features": 96, | |
"growth_rate": 48, | |
"block_config": (6, 12, 36, 24), | |
}, | |
}, | |
} | |