Spaces:
Sleeping
Sleeping
from ._base import EncoderMixin | |
from timm.models.resnet import ResNet | |
from timm.models.sknet import SelectiveKernelBottleneck, SelectiveKernelBasic | |
import torch.nn as nn | |
class SkNetEncoder(ResNet, EncoderMixin): | |
def __init__(self, out_channels, depth=5, **kwargs): | |
super().__init__(**kwargs) | |
self._depth = depth | |
self._out_channels = out_channels | |
self._in_channels = 3 | |
del self.fc | |
del self.global_pool | |
def get_stages(self): | |
return [ | |
nn.Identity(), | |
nn.Sequential(self.conv1, self.bn1, self.act1), | |
nn.Sequential(self.maxpool, self.layer1), | |
self.layer2, | |
self.layer3, | |
self.layer4, | |
] | |
def forward(self, x): | |
stages = self.get_stages() | |
features = [] | |
for i in range(self._depth + 1): | |
x = stages[i](x) | |
features.append(x) | |
return features | |
def load_state_dict(self, state_dict, **kwargs): | |
state_dict.pop("fc.bias", None) | |
state_dict.pop("fc.weight", None) | |
super().load_state_dict(state_dict, **kwargs) | |
sknet_weights = { | |
"timm-skresnet18": { | |
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth" # noqa | |
}, | |
"timm-skresnet34": { | |
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth" # noqa | |
}, | |
"timm-skresnext50_32x4d": { | |
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth" # noqa | |
}, | |
} | |
pretrained_settings = {} | |
for model_name, sources in sknet_weights.items(): | |
pretrained_settings[model_name] = {} | |
for source_name, source_url in sources.items(): | |
pretrained_settings[model_name][source_name] = { | |
"url": source_url, | |
"input_size": [3, 224, 224], | |
"input_range": [0, 1], | |
"mean": [0.485, 0.456, 0.406], | |
"std": [0.229, 0.224, 0.225], | |
"num_classes": 1000, | |
} | |
timm_sknet_encoders = { | |
"timm-skresnet18": { | |
"encoder": SkNetEncoder, | |
"pretrained_settings": pretrained_settings["timm-skresnet18"], | |
"params": { | |
"out_channels": (3, 64, 64, 128, 256, 512), | |
"block": SelectiveKernelBasic, | |
"layers": [2, 2, 2, 2], | |
"zero_init_last": False, | |
"block_args": {"sk_kwargs": {"rd_ratio": 1 / 8, "split_input": True}}, | |
}, | |
}, | |
"timm-skresnet34": { | |
"encoder": SkNetEncoder, | |
"pretrained_settings": pretrained_settings["timm-skresnet34"], | |
"params": { | |
"out_channels": (3, 64, 64, 128, 256, 512), | |
"block": SelectiveKernelBasic, | |
"layers": [3, 4, 6, 3], | |
"zero_init_last": False, | |
"block_args": {"sk_kwargs": {"rd_ratio": 1 / 8, "split_input": True}}, | |
}, | |
}, | |
"timm-skresnext50_32x4d": { | |
"encoder": SkNetEncoder, | |
"pretrained_settings": pretrained_settings["timm-skresnext50_32x4d"], | |
"params": { | |
"out_channels": (3, 64, 256, 512, 1024, 2048), | |
"block": SelectiveKernelBottleneck, | |
"layers": [3, 4, 6, 3], | |
"zero_init_last": False, | |
"cardinality": 32, | |
"base_width": 4, | |
}, | |
}, | |
} | |