Spaces:
Sleeping
Sleeping
"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` | |
Attributes: | |
_out_channels (list of int): specify number of channels for each encoder feature tensor | |
_depth (int): specify number of stages in decoder (in other words number of downsampling operations) | |
_in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) | |
Methods: | |
forward(self, x: torch.Tensor) | |
produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of | |
shape NCHW (features should be sorted in descending order according to spatial resolution, starting | |
with resolution same as input `x` tensor). | |
Input: `x` with shape (1, 3, 64, 64) | |
Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes | |
[(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), | |
(1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) | |
also should support number of features according to specified depth, e.g. if depth = 5, | |
number of feature tensors = 6 (one with same resolution as input and 5 downsampled), | |
depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). | |
""" | |
import torch.nn as nn | |
from torchvision.models.vgg import VGG | |
from torchvision.models.vgg import make_layers | |
from pretrainedmodels.models.torchvision_models import pretrained_settings | |
from ._base import EncoderMixin | |
# fmt: off | |
cfg = { | |
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], | |
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], | |
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], | |
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], | |
} | |
# fmt: on | |
class VGGEncoder(VGG, EncoderMixin): | |
def __init__(self, out_channels, config, batch_norm=False, depth=5, **kwargs): | |
super().__init__(make_layers(config, batch_norm=batch_norm), **kwargs) | |
self._out_channels = out_channels | |
self._depth = depth | |
self._in_channels = 3 | |
del self.classifier | |
def make_dilated(self, *args, **kwargs): | |
raise ValueError( | |
"'VGG' models do not support dilated mode due to Max Pooling" | |
" operations for downsampling!" | |
) | |
def get_stages(self): | |
stages = [] | |
stage_modules = [] | |
for module in self.features: | |
if isinstance(module, nn.MaxPool2d): | |
stages.append(nn.Sequential(*stage_modules)) | |
stage_modules = [] | |
stage_modules.append(module) | |
stages.append(nn.Sequential(*stage_modules)) | |
return stages | |
def forward(self, x): | |
stages = self.get_stages() | |
features = [] | |
for i in range(self._depth + 1): | |
x = stages[i](x) | |
features.append(x) | |
return features | |
def load_state_dict(self, state_dict, **kwargs): | |
keys = list(state_dict.keys()) | |
for k in keys: | |
if k.startswith("classifier"): | |
state_dict.pop(k, None) | |
super().load_state_dict(state_dict, **kwargs) | |
vgg_encoders = { | |
"vgg11": { | |
"encoder": VGGEncoder, | |
"pretrained_settings": pretrained_settings["vgg11"], | |
"params": { | |
"out_channels": (64, 128, 256, 512, 512, 512), | |
"config": cfg["A"], | |
"batch_norm": False, | |
}, | |
}, | |
"vgg11_bn": { | |
"encoder": VGGEncoder, | |
"pretrained_settings": pretrained_settings["vgg11_bn"], | |
"params": { | |
"out_channels": (64, 128, 256, 512, 512, 512), | |
"config": cfg["A"], | |
"batch_norm": True, | |
}, | |
}, | |
"vgg13": { | |
"encoder": VGGEncoder, | |
"pretrained_settings": pretrained_settings["vgg13"], | |
"params": { | |
"out_channels": (64, 128, 256, 512, 512, 512), | |
"config": cfg["B"], | |
"batch_norm": False, | |
}, | |
}, | |
"vgg13_bn": { | |
"encoder": VGGEncoder, | |
"pretrained_settings": pretrained_settings["vgg13_bn"], | |
"params": { | |
"out_channels": (64, 128, 256, 512, 512, 512), | |
"config": cfg["B"], | |
"batch_norm": True, | |
}, | |
}, | |
"vgg16": { | |
"encoder": VGGEncoder, | |
"pretrained_settings": pretrained_settings["vgg16"], | |
"params": { | |
"out_channels": (64, 128, 256, 512, 512, 512), | |
"config": cfg["D"], | |
"batch_norm": False, | |
}, | |
}, | |
"vgg16_bn": { | |
"encoder": VGGEncoder, | |
"pretrained_settings": pretrained_settings["vgg16_bn"], | |
"params": { | |
"out_channels": (64, 128, 256, 512, 512, 512), | |
"config": cfg["D"], | |
"batch_norm": True, | |
}, | |
}, | |
"vgg19": { | |
"encoder": VGGEncoder, | |
"pretrained_settings": pretrained_settings["vgg19"], | |
"params": { | |
"out_channels": (64, 128, 256, 512, 512, 512), | |
"config": cfg["E"], | |
"batch_norm": False, | |
}, | |
}, | |
"vgg19_bn": { | |
"encoder": VGGEncoder, | |
"pretrained_settings": pretrained_settings["vgg19_bn"], | |
"params": { | |
"out_channels": (64, 128, 256, 512, 512, 512), | |
"config": cfg["E"], | |
"batch_norm": True, | |
}, | |
}, | |
} | |