Spaces:
Sleeping
Sleeping
| """Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` | |
| Attributes: | |
| _out_channels (list of int): specify number of channels for each encoder feature tensor | |
| _depth (int): specify number of stages in decoder (in other words number of downsampling operations) | |
| _in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) | |
| Methods: | |
| forward(self, x: torch.Tensor) | |
| produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of | |
| shape NCHW (features should be sorted in descending order according to spatial resolution, starting | |
| with resolution same as input `x` tensor). | |
| Input: `x` with shape (1, 3, 64, 64) | |
| Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes | |
| [(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), | |
| (1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) | |
| also should support number of features according to specified depth, e.g. if depth = 5, | |
| number of feature tensors = 6 (one with same resolution as input and 5 downsampled), | |
| depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). | |
| """ | |
| import torch.nn as nn | |
| from torchvision.models.vgg import VGG | |
| from torchvision.models.vgg import make_layers | |
| from pretrainedmodels.models.torchvision_models import pretrained_settings | |
| from ._base import EncoderMixin | |
| # fmt: off | |
| cfg = { | |
| 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], | |
| 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], | |
| 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], | |
| 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], | |
| } | |
| # fmt: on | |
| class VGGEncoder(VGG, EncoderMixin): | |
| def __init__(self, out_channels, config, batch_norm=False, depth=5, **kwargs): | |
| super().__init__(make_layers(config, batch_norm=batch_norm), **kwargs) | |
| self._out_channels = out_channels | |
| self._depth = depth | |
| self._in_channels = 3 | |
| del self.classifier | |
| def make_dilated(self, *args, **kwargs): | |
| raise ValueError( | |
| "'VGG' models do not support dilated mode due to Max Pooling" | |
| " operations for downsampling!" | |
| ) | |
| def get_stages(self): | |
| stages = [] | |
| stage_modules = [] | |
| for module in self.features: | |
| if isinstance(module, nn.MaxPool2d): | |
| stages.append(nn.Sequential(*stage_modules)) | |
| stage_modules = [] | |
| stage_modules.append(module) | |
| stages.append(nn.Sequential(*stage_modules)) | |
| return stages | |
| def forward(self, x): | |
| stages = self.get_stages() | |
| features = [] | |
| for i in range(self._depth + 1): | |
| x = stages[i](x) | |
| features.append(x) | |
| return features | |
| def load_state_dict(self, state_dict, **kwargs): | |
| keys = list(state_dict.keys()) | |
| for k in keys: | |
| if k.startswith("classifier"): | |
| state_dict.pop(k, None) | |
| super().load_state_dict(state_dict, **kwargs) | |
| vgg_encoders = { | |
| "vgg11": { | |
| "encoder": VGGEncoder, | |
| "pretrained_settings": pretrained_settings["vgg11"], | |
| "params": { | |
| "out_channels": (64, 128, 256, 512, 512, 512), | |
| "config": cfg["A"], | |
| "batch_norm": False, | |
| }, | |
| }, | |
| "vgg11_bn": { | |
| "encoder": VGGEncoder, | |
| "pretrained_settings": pretrained_settings["vgg11_bn"], | |
| "params": { | |
| "out_channels": (64, 128, 256, 512, 512, 512), | |
| "config": cfg["A"], | |
| "batch_norm": True, | |
| }, | |
| }, | |
| "vgg13": { | |
| "encoder": VGGEncoder, | |
| "pretrained_settings": pretrained_settings["vgg13"], | |
| "params": { | |
| "out_channels": (64, 128, 256, 512, 512, 512), | |
| "config": cfg["B"], | |
| "batch_norm": False, | |
| }, | |
| }, | |
| "vgg13_bn": { | |
| "encoder": VGGEncoder, | |
| "pretrained_settings": pretrained_settings["vgg13_bn"], | |
| "params": { | |
| "out_channels": (64, 128, 256, 512, 512, 512), | |
| "config": cfg["B"], | |
| "batch_norm": True, | |
| }, | |
| }, | |
| "vgg16": { | |
| "encoder": VGGEncoder, | |
| "pretrained_settings": pretrained_settings["vgg16"], | |
| "params": { | |
| "out_channels": (64, 128, 256, 512, 512, 512), | |
| "config": cfg["D"], | |
| "batch_norm": False, | |
| }, | |
| }, | |
| "vgg16_bn": { | |
| "encoder": VGGEncoder, | |
| "pretrained_settings": pretrained_settings["vgg16_bn"], | |
| "params": { | |
| "out_channels": (64, 128, 256, 512, 512, 512), | |
| "config": cfg["D"], | |
| "batch_norm": True, | |
| }, | |
| }, | |
| "vgg19": { | |
| "encoder": VGGEncoder, | |
| "pretrained_settings": pretrained_settings["vgg19"], | |
| "params": { | |
| "out_channels": (64, 128, 256, 512, 512, 512), | |
| "config": cfg["E"], | |
| "batch_norm": False, | |
| }, | |
| }, | |
| "vgg19_bn": { | |
| "encoder": VGGEncoder, | |
| "pretrained_settings": pretrained_settings["vgg19_bn"], | |
| "params": { | |
| "out_channels": (64, 128, 256, 512, 512, 512), | |
| "config": cfg["E"], | |
| "batch_norm": True, | |
| }, | |
| }, | |
| } | |