Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
from .modules import Activation | |
class SegmentationHead(nn.Sequential): | |
def __init__( | |
self, in_channels, out_channels, kernel_size=3, activation=None, upsampling=1 | |
): | |
conv2d = nn.Conv2d( | |
in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2 | |
) | |
upsampling = ( | |
nn.UpsamplingBilinear2d(scale_factor=upsampling) | |
if upsampling > 1 | |
else nn.Identity() | |
) | |
activation = Activation(activation) | |
super().__init__(conv2d, upsampling, activation) | |
class ClassificationHead(nn.Sequential): | |
def __init__( | |
self, in_channels, classes, pooling="avg", dropout=0.2, activation=None | |
): | |
if pooling not in ("max", "avg"): | |
raise ValueError( | |
"Pooling should be one of ('max', 'avg'), got {}.".format(pooling) | |
) | |
pool = nn.AdaptiveAvgPool2d(1) if pooling == "avg" else nn.AdaptiveMaxPool2d(1) | |
flatten = nn.Flatten() | |
dropout = nn.Dropout(p=dropout, inplace=True) if dropout else nn.Identity() | |
linear = nn.Linear(in_channels, classes, bias=True) | |
activation = Activation(activation) | |
super().__init__(pool, flatten, dropout, linear, activation) | |