VecMapLocNet / models /feature_extractor_v4.py
wangerniu's picture
添加必要文件
c9b5796
import logging
import numpy as np
import torch
import torch.nn as nn
import torchvision
from torchvision.models.feature_extraction import create_feature_extractor
import feature_extractor_models as smp
import torch
from .base import BaseModel
logger = logging.getLogger(__name__)
class FeatureExtractor(BaseModel):
default_conf = {
"pretrained": True,
"input_dim": 3,
"output_dim": 128, # # of channels in output feature maps
"encoder": "resnet50", # torchvision net as string
"remove_stride_from_first_conv": False,
"num_downsample": None, # how many downsample block
"decoder_norm": "nn.BatchNorm2d", # normalization ind decoder blocks
"do_average_pooling": False,
"checkpointed": False, # whether to use gradient checkpointing
"architecture":"FPN"
}
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
# self.fmodel=None
def build_encoder(self, conf):
assert isinstance(conf.encoder, str)
if conf.pretrained:
assert conf.input_dim == 3
# return encoder, layers
def _init(self, conf):
# Preprocessing
self.register_buffer("mean_", torch.tensor(self.mean), persistent=False)
self.register_buffer("std_", torch.tensor(self.std), persistent=False)
if conf.architecture=="FPN":
# Encoder
self.fmodel = smp.FPN(
encoder_name=conf.encoder, # choose encoder, e.g. mobilenet_v2 or efficientnet-b7
encoder_weights="imagenet", # use `imagenet` pre-trained weights for encoder initialization
in_channels=conf.input_dim, # model input channels (1 for gray-scale images, 3 for RGB, etc.)
classes=conf.output_dim, # model output channels (number of classes in your dataset)
upsampling=2, # optional, final output upsampling, default is 8
activation=None
)
elif conf.architecture == "LightFPN":
self.fmodel = smp.L(
encoder_name=conf.encoder, # choose encoder, e.g. mobilenet_v2 or efficientnet-b7
encoder_weights="imagenet", # use `imagenet` pre-trained weights for encoder initialization
in_channels=conf.input_dim, # model input channels (1 for gray-scale images, 3 for RGB, etc.)
classes=conf.output_dim, # model output channels (number of classes in your dataset)
upsampling=2, # optional, final output upsampling, default is 8
activation=None
)
elif conf.architecture=="PSP":
self.fmodel =smp.PSPNet(
encoder_name=conf.encoder, # choose encoder, e.g. mobilenet_v2 or efficientnet-b7
encoder_weights="imagenet", # use `imagenet` pre-trained weights for encoder initialization
in_channels=conf.input_dim, # model input channels (1 for gray-scale images, 3 for RGB, etc.)
classes=conf.output_dim, # model output channels (number of classes in your dataset)
upsampling=4, # optional, final output upsampling, default is 8
activation=None
)
else:
raise ValueError("Only FPN")
# elif conf.architecture=="Unet":
# self.fmodel = smp.FPN(
# encoder_name=conf.encoder, # choose encoder, e.g. mobilenet_v2 or efficientnet-b7
# encoder_weights="imagenet", # use `imagenet` pre-trained weights for encoder initialization
# in_channels=conf.input_dim, # model input channels (1 for gray-scale images, 3 for RGB, etc.)
# classes=conf.output_dim, # model output channels (number of classes in your dataset)
# # upsampling=int(conf.upsampling), # optional, final output upsampling, default is 8
# activation="relu"
# )
def _forward(self, data):
image = data["image"]
image = (image - self.mean_[:, None, None]) / self.std_[:, None, None]
output = self.fmodel(image)
# output = self.decoder(skip_features)
pred = {"feature_maps": [output]}
return pred
if __name__ == '__main__':
model=FeatureExtractor()