Spaces:
Sleeping
Sleeping
import logging | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torchvision | |
from torchvision.models.feature_extraction import create_feature_extractor | |
import feature_extractor_models as smp | |
import torch | |
from .base import BaseModel | |
logger = logging.getLogger(__name__) | |
import math | |
import torch | |
import numpy as np | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import init | |
from collections import OrderedDict | |
import torch.distributed as dist | |
def get_batch_norm(inplace=False): | |
if dist.is_available() and dist.is_initialized(): # 检查是否在分布式环境中 | |
return nn.SyncBatchNorm | |
else: | |
return nn.BatchNorm2d | |
BatchNorm2d = get_batch_norm() | |
bn_mom = 0.1 | |
def conv3x3(in_planes, out_planes, stride=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, no_relu=False): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = BatchNorm2d(planes, momentum=bn_mom) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = BatchNorm2d(planes, momentum=bn_mom) | |
self.downsample = downsample | |
self.stride = stride | |
self.no_relu = no_relu | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
if self.no_relu: | |
return out | |
else: | |
return self.relu(out) | |
class Bottleneck(nn.Module): | |
expansion = 2 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, no_relu=True): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = BatchNorm2d(planes, momentum=bn_mom) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
self.bn2 = BatchNorm2d(planes, momentum=bn_mom) | |
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, | |
bias=False) | |
self.bn3 = BatchNorm2d(planes * self.expansion, momentum=bn_mom) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
self.no_relu = no_relu | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
if self.no_relu: | |
return out | |
else: | |
return self.relu(out) | |
class DAPPM(nn.Module): | |
def __init__(self, inplanes, branch_planes, outplanes): | |
super(DAPPM, self).__init__() | |
self.scale1 = nn.Sequential(nn.AvgPool2d(kernel_size=5, stride=2, padding=2), | |
BatchNorm2d(inplanes, momentum=bn_mom), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False), | |
) | |
self.scale2 = nn.Sequential(nn.AvgPool2d(kernel_size=9, stride=4, padding=4), | |
BatchNorm2d(inplanes, momentum=bn_mom), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False), | |
) | |
self.scale3 = nn.Sequential(nn.AvgPool2d(kernel_size=17, stride=8, padding=8), | |
BatchNorm2d(inplanes, momentum=bn_mom), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False), | |
) | |
self.scale4 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), | |
BatchNorm2d(inplanes, momentum=bn_mom), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False), | |
) | |
self.scale0 = nn.Sequential( | |
BatchNorm2d(inplanes, momentum=bn_mom), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False), | |
) | |
self.process1 = nn.Sequential( | |
BatchNorm2d(branch_planes, momentum=bn_mom), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False), | |
) | |
self.process2 = nn.Sequential( | |
BatchNorm2d(branch_planes, momentum=bn_mom), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False), | |
) | |
self.process3 = nn.Sequential( | |
BatchNorm2d(branch_planes, momentum=bn_mom), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False), | |
) | |
self.process4 = nn.Sequential( | |
BatchNorm2d(branch_planes, momentum=bn_mom), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False), | |
) | |
self.compression = nn.Sequential( | |
BatchNorm2d(branch_planes * 5, momentum=bn_mom), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(branch_planes * 5, outplanes, kernel_size=1, bias=False), | |
) | |
self.shortcut = nn.Sequential( | |
BatchNorm2d(inplanes, momentum=bn_mom), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(inplanes, outplanes, kernel_size=1, bias=False), | |
) | |
def forward(self, x): | |
# x = self.downsample(x) | |
width = x.shape[-1] | |
height = x.shape[-2] | |
x_list = [] | |
x_list.append(self.scale0(x)) | |
x_list.append(self.process1((F.interpolate(self.scale1(x), | |
size=[height, width], | |
mode='bilinear') + x_list[0]))) | |
x_list.append((self.process2((F.interpolate(self.scale2(x), | |
size=[height, width], | |
mode='bilinear') + x_list[1])))) | |
x_list.append(self.process3((F.interpolate(self.scale3(x), | |
size=[height, width], | |
mode='bilinear') + x_list[2]))) | |
x_list.append(self.process4((F.interpolate(self.scale4(x), | |
size=[height, width], | |
mode='bilinear') + x_list[3]))) | |
out = self.compression(torch.cat(x_list, 1)) + self.shortcut(x) | |
return out | |
class segmenthead(nn.Module): | |
def __init__(self, inplanes, interplanes, outplanes, scale_factor=None): | |
super(segmenthead, self).__init__() | |
self.bn1 = BatchNorm2d(inplanes, momentum=bn_mom) | |
self.conv1 = nn.Conv2d(inplanes, interplanes, kernel_size=3, padding=1, bias=False) | |
self.bn2 = BatchNorm2d(interplanes, momentum=bn_mom) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(interplanes, outplanes, kernel_size=1, padding=0, bias=True) | |
self.scale_factor = scale_factor | |
def forward(self, x): | |
x = self.conv1(self.relu(self.bn1(x))) | |
out = self.conv2(self.relu(self.bn2(x))) | |
if self.scale_factor is not None: | |
height = x.shape[-2] * self.scale_factor | |
width = x.shape[-1] * self.scale_factor | |
out = F.interpolate(out, | |
size=[height, width], | |
mode='bilinear') | |
return out | |
class DualResNet(nn.Module): | |
def __init__(self, block, layers, num_classes=19, planes=64, spp_planes=128, head_planes=128, augment=False): | |
super(DualResNet, self).__init__() | |
highres_planes = planes * 2 | |
self.augment = augment | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(3, planes, kernel_size=3, stride=2, padding=1), | |
BatchNorm2d(planes, momentum=bn_mom), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(planes, planes, kernel_size=3, stride=2, padding=1), | |
BatchNorm2d(planes, momentum=bn_mom), | |
nn.ReLU(inplace=True), | |
) | |
self.relu = nn.ReLU(inplace=False) | |
self.layer1 = self._make_layer(block, planes, planes, layers[0]) | |
self.layer2 = self._make_layer(block, planes, planes * 2, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, planes * 2, planes * 4, layers[2], stride=2) | |
self.layer4 = self._make_layer(block, planes * 4, planes * 8, layers[3], stride=2) | |
self.compression3 = nn.Sequential( | |
nn.Conv2d(planes * 4, highres_planes, kernel_size=1, bias=False), | |
BatchNorm2d(highres_planes, momentum=bn_mom), | |
) | |
self.compression4 = nn.Sequential( | |
nn.Conv2d(planes * 8, highres_planes, kernel_size=1, bias=False), | |
BatchNorm2d(highres_planes, momentum=bn_mom), | |
) | |
self.down3 = nn.Sequential( | |
nn.Conv2d(highres_planes, planes * 4, kernel_size=3, stride=2, padding=1, bias=False), | |
BatchNorm2d(planes * 4, momentum=bn_mom), | |
) | |
self.down4 = nn.Sequential( | |
nn.Conv2d(highres_planes, planes * 4, kernel_size=3, stride=2, padding=1, bias=False), | |
BatchNorm2d(planes * 4, momentum=bn_mom), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(planes * 4, planes * 8, kernel_size=3, stride=2, padding=1, bias=False), | |
BatchNorm2d(planes * 8, momentum=bn_mom), | |
) | |
self.layer3_ = self._make_layer(block, planes * 2, highres_planes, 2) | |
self.layer4_ = self._make_layer(block, highres_planes, highres_planes, 2) | |
self.layer5_ = self._make_layer(Bottleneck, highres_planes, highres_planes, 1) | |
self.layer5 = self._make_layer(Bottleneck, planes * 8, planes * 8, 1, stride=2) | |
self.spp = DAPPM(planes * 16, spp_planes, planes * 4) | |
if self.augment: | |
self.seghead_extra = segmenthead(highres_planes, head_planes, num_classes) | |
self.final_layer = segmenthead(planes * 4, head_planes, num_classes, scale_factor=4) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
elif isinstance(m, BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
def _make_layer(self, block, inplanes, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion, momentum=bn_mom), | |
) | |
layers = [] | |
layers.append(block(inplanes, planes, stride, downsample)) | |
inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
if i == (blocks - 1): | |
layers.append(block(inplanes, planes, stride=1, no_relu=True)) | |
else: | |
layers.append(block(inplanes, planes, stride=1, no_relu=False)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
width_output = x.shape[-1] // 8 | |
height_output = x.shape[-2] // 8 | |
layers = [] | |
x = self.conv1(x) | |
x = self.layer1(x) | |
layers.append(x) | |
x = self.layer2(self.relu(x)) | |
layers.append(x) | |
x = self.layer3(self.relu(x)) | |
layers.append(x) | |
x_ = self.layer3_(self.relu(layers[1])) | |
x = x + self.down3(self.relu(x_)) | |
x_ = x_ + F.interpolate( | |
self.compression3(self.relu(layers[2])), | |
size=[height_output, width_output], | |
mode='bilinear') | |
if self.augment: | |
temp = x_ | |
x = self.layer4(self.relu(x)) | |
layers.append(x) | |
x_ = self.layer4_(self.relu(x_)) | |
x = x + self.down4(self.relu(x_)) | |
x_ = x_ + F.interpolate( | |
self.compression4(self.relu(layers[3])), | |
size=[height_output, width_output], | |
mode='bilinear') | |
x_ = self.layer5_(self.relu(x_)) | |
x = F.interpolate( | |
self.spp(self.layer5(self.relu(x))), | |
size=[height_output, width_output], | |
mode='bilinear') | |
x_ = self.final_layer(x + x_) | |
if self.augment: | |
x_extra = self.seghead_extra(temp) | |
return [x_, x_extra] | |
else: | |
return x_ | |
class FeatureExtractor(BaseModel): | |
default_conf = { | |
"pretrained": True, | |
"input_dim": 3, | |
"output_dim": 128, # # of channels in output feature maps | |
"encoder": "resnet50", # torchvision net as string | |
"remove_stride_from_first_conv": False, | |
"num_downsample": None, # how many downsample block | |
"decoder_norm": "nn.BatchNorm2d", # normalization ind decoder blocks | |
"do_average_pooling": False, | |
"checkpointed": False, # whether to use gradient checkpointing | |
"architecture":"FPN" | |
} | |
mean = [0.485, 0.456, 0.406] | |
std = [0.229, 0.224, 0.225] | |
# self.fmodel=None | |
def build_encoder(self, conf): | |
assert isinstance(conf.encoder, str) | |
if conf.pretrained: | |
assert conf.input_dim == 3 | |
# return encoder, layers | |
def _init(self, conf): | |
# Preprocessing | |
self.register_buffer("mean_", torch.tensor(self.mean), persistent=False) | |
self.register_buffer("std_", torch.tensor(self.std), persistent=False) | |
if conf.architecture=="DDRNet23s": | |
# Encoder | |
self.fmodel= DualResNet(BasicBlock, [2, 2, 2, 2], num_classes=conf.output_dim, planes=32, spp_planes=128, head_planes=64, augment=False) | |
else: | |
raise ValueError("DDRNet23s") | |
# elif conf.architecture=="Unet": | |
# self.fmodel = smp.FPN( | |
# encoder_name=conf.encoder, # choose encoder, e.g. mobilenet_v2 or efficientnet-b7 | |
# encoder_weights="imagenet", # use `imagenet` pre-trained weights for encoder initialization | |
# in_channels=conf.input_dim, # model input channels (1 for gray-scale images, 3 for RGB, etc.) | |
# classes=conf.output_dim, # model output channels (number of classes in your dataset) | |
# # upsampling=int(conf.upsampling), # optional, final output upsampling, default is 8 | |
# activation="relu" | |
# ) | |
def _forward(self, data): | |
image = data["image"] | |
image = (image - self.mean_[:, None, None]) / self.std_[:, None, None] | |
output = self.fmodel(image) | |
# output = self.decoder(skip_features) | |
pred = {"feature_maps": [output]} | |
return pred | |
if __name__ == '__main__': | |
model=FeatureExtractor() |