VecMapLocNet / models /feature_extractor_v5.py
wangerniu's picture
添加必要文件
c9b5796
import logging
import numpy as np
import torch
import torch.nn as nn
import torchvision
from torchvision.models.feature_extraction import create_feature_extractor
import feature_extractor_models as smp
import torch
from .base import BaseModel
logger = logging.getLogger(__name__)
import math
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from collections import OrderedDict
import torch.distributed as dist
def get_batch_norm(inplace=False):
if dist.is_available() and dist.is_initialized(): # 检查是否在分布式环境中
return nn.SyncBatchNorm
else:
return nn.BatchNorm2d
BatchNorm2d = get_batch_norm()
bn_mom = 0.1
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, no_relu=False):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = BatchNorm2d(planes, momentum=bn_mom)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = BatchNorm2d(planes, momentum=bn_mom)
self.downsample = downsample
self.stride = stride
self.no_relu = no_relu
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
if self.no_relu:
return out
else:
return self.relu(out)
class Bottleneck(nn.Module):
expansion = 2
def __init__(self, inplanes, planes, stride=1, downsample=None, no_relu=True):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = BatchNorm2d(planes, momentum=bn_mom)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = BatchNorm2d(planes, momentum=bn_mom)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
bias=False)
self.bn3 = BatchNorm2d(planes * self.expansion, momentum=bn_mom)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
self.no_relu = no_relu
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
if self.no_relu:
return out
else:
return self.relu(out)
class DAPPM(nn.Module):
def __init__(self, inplanes, branch_planes, outplanes):
super(DAPPM, self).__init__()
self.scale1 = nn.Sequential(nn.AvgPool2d(kernel_size=5, stride=2, padding=2),
BatchNorm2d(inplanes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
)
self.scale2 = nn.Sequential(nn.AvgPool2d(kernel_size=9, stride=4, padding=4),
BatchNorm2d(inplanes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
)
self.scale3 = nn.Sequential(nn.AvgPool2d(kernel_size=17, stride=8, padding=8),
BatchNorm2d(inplanes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
)
self.scale4 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
BatchNorm2d(inplanes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
)
self.scale0 = nn.Sequential(
BatchNorm2d(inplanes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
)
self.process1 = nn.Sequential(
BatchNorm2d(branch_planes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False),
)
self.process2 = nn.Sequential(
BatchNorm2d(branch_planes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False),
)
self.process3 = nn.Sequential(
BatchNorm2d(branch_planes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False),
)
self.process4 = nn.Sequential(
BatchNorm2d(branch_planes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False),
)
self.compression = nn.Sequential(
BatchNorm2d(branch_planes * 5, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(branch_planes * 5, outplanes, kernel_size=1, bias=False),
)
self.shortcut = nn.Sequential(
BatchNorm2d(inplanes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(inplanes, outplanes, kernel_size=1, bias=False),
)
def forward(self, x):
# x = self.downsample(x)
width = x.shape[-1]
height = x.shape[-2]
x_list = []
x_list.append(self.scale0(x))
x_list.append(self.process1((F.interpolate(self.scale1(x),
size=[height, width],
mode='bilinear') + x_list[0])))
x_list.append((self.process2((F.interpolate(self.scale2(x),
size=[height, width],
mode='bilinear') + x_list[1]))))
x_list.append(self.process3((F.interpolate(self.scale3(x),
size=[height, width],
mode='bilinear') + x_list[2])))
x_list.append(self.process4((F.interpolate(self.scale4(x),
size=[height, width],
mode='bilinear') + x_list[3])))
out = self.compression(torch.cat(x_list, 1)) + self.shortcut(x)
return out
class segmenthead(nn.Module):
def __init__(self, inplanes, interplanes, outplanes, scale_factor=None):
super(segmenthead, self).__init__()
self.bn1 = BatchNorm2d(inplanes, momentum=bn_mom)
self.conv1 = nn.Conv2d(inplanes, interplanes, kernel_size=3, padding=1, bias=False)
self.bn2 = BatchNorm2d(interplanes, momentum=bn_mom)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(interplanes, outplanes, kernel_size=1, padding=0, bias=True)
self.scale_factor = scale_factor
def forward(self, x):
x = self.conv1(self.relu(self.bn1(x)))
out = self.conv2(self.relu(self.bn2(x)))
if self.scale_factor is not None:
height = x.shape[-2] * self.scale_factor
width = x.shape[-1] * self.scale_factor
out = F.interpolate(out,
size=[height, width],
mode='bilinear')
return out
class DualResNet(nn.Module):
def __init__(self, block, layers, num_classes=19, planes=64, spp_planes=128, head_planes=128, augment=False):
super(DualResNet, self).__init__()
highres_planes = planes * 2
self.augment = augment
self.conv1 = nn.Sequential(
nn.Conv2d(3, planes, kernel_size=3, stride=2, padding=1),
BatchNorm2d(planes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(planes, planes, kernel_size=3, stride=2, padding=1),
BatchNorm2d(planes, momentum=bn_mom),
nn.ReLU(inplace=True),
)
self.relu = nn.ReLU(inplace=False)
self.layer1 = self._make_layer(block, planes, planes, layers[0])
self.layer2 = self._make_layer(block, planes, planes * 2, layers[1], stride=2)
self.layer3 = self._make_layer(block, planes * 2, planes * 4, layers[2], stride=2)
self.layer4 = self._make_layer(block, planes * 4, planes * 8, layers[3], stride=2)
self.compression3 = nn.Sequential(
nn.Conv2d(planes * 4, highres_planes, kernel_size=1, bias=False),
BatchNorm2d(highres_planes, momentum=bn_mom),
)
self.compression4 = nn.Sequential(
nn.Conv2d(planes * 8, highres_planes, kernel_size=1, bias=False),
BatchNorm2d(highres_planes, momentum=bn_mom),
)
self.down3 = nn.Sequential(
nn.Conv2d(highres_planes, planes * 4, kernel_size=3, stride=2, padding=1, bias=False),
BatchNorm2d(planes * 4, momentum=bn_mom),
)
self.down4 = nn.Sequential(
nn.Conv2d(highres_planes, planes * 4, kernel_size=3, stride=2, padding=1, bias=False),
BatchNorm2d(planes * 4, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(planes * 4, planes * 8, kernel_size=3, stride=2, padding=1, bias=False),
BatchNorm2d(planes * 8, momentum=bn_mom),
)
self.layer3_ = self._make_layer(block, planes * 2, highres_planes, 2)
self.layer4_ = self._make_layer(block, highres_planes, highres_planes, 2)
self.layer5_ = self._make_layer(Bottleneck, highres_planes, highres_planes, 1)
self.layer5 = self._make_layer(Bottleneck, planes * 8, planes * 8, 1, stride=2)
self.spp = DAPPM(planes * 16, spp_planes, planes * 4)
if self.augment:
self.seghead_extra = segmenthead(highres_planes, head_planes, num_classes)
self.final_layer = segmenthead(planes * 4, head_planes, num_classes, scale_factor=4)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, inplanes, planes, blocks, stride=1):
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion, momentum=bn_mom),
)
layers = []
layers.append(block(inplanes, planes, stride, downsample))
inplanes = planes * block.expansion
for i in range(1, blocks):
if i == (blocks - 1):
layers.append(block(inplanes, planes, stride=1, no_relu=True))
else:
layers.append(block(inplanes, planes, stride=1, no_relu=False))
return nn.Sequential(*layers)
def forward(self, x):
width_output = x.shape[-1] // 8
height_output = x.shape[-2] // 8
layers = []
x = self.conv1(x)
x = self.layer1(x)
layers.append(x)
x = self.layer2(self.relu(x))
layers.append(x)
x = self.layer3(self.relu(x))
layers.append(x)
x_ = self.layer3_(self.relu(layers[1]))
x = x + self.down3(self.relu(x_))
x_ = x_ + F.interpolate(
self.compression3(self.relu(layers[2])),
size=[height_output, width_output],
mode='bilinear')
if self.augment:
temp = x_
x = self.layer4(self.relu(x))
layers.append(x)
x_ = self.layer4_(self.relu(x_))
x = x + self.down4(self.relu(x_))
x_ = x_ + F.interpolate(
self.compression4(self.relu(layers[3])),
size=[height_output, width_output],
mode='bilinear')
x_ = self.layer5_(self.relu(x_))
x = F.interpolate(
self.spp(self.layer5(self.relu(x))),
size=[height_output, width_output],
mode='bilinear')
x_ = self.final_layer(x + x_)
if self.augment:
x_extra = self.seghead_extra(temp)
return [x_, x_extra]
else:
return x_
class FeatureExtractor(BaseModel):
default_conf = {
"pretrained": True,
"input_dim": 3,
"output_dim": 128, # # of channels in output feature maps
"encoder": "resnet50", # torchvision net as string
"remove_stride_from_first_conv": False,
"num_downsample": None, # how many downsample block
"decoder_norm": "nn.BatchNorm2d", # normalization ind decoder blocks
"do_average_pooling": False,
"checkpointed": False, # whether to use gradient checkpointing
"architecture":"FPN"
}
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
# self.fmodel=None
def build_encoder(self, conf):
assert isinstance(conf.encoder, str)
if conf.pretrained:
assert conf.input_dim == 3
# return encoder, layers
def _init(self, conf):
# Preprocessing
self.register_buffer("mean_", torch.tensor(self.mean), persistent=False)
self.register_buffer("std_", torch.tensor(self.std), persistent=False)
if conf.architecture=="DDRNet23s":
# Encoder
self.fmodel= DualResNet(BasicBlock, [2, 2, 2, 2], num_classes=conf.output_dim, planes=32, spp_planes=128, head_planes=64, augment=False)
else:
raise ValueError("DDRNet23s")
# elif conf.architecture=="Unet":
# self.fmodel = smp.FPN(
# encoder_name=conf.encoder, # choose encoder, e.g. mobilenet_v2 or efficientnet-b7
# encoder_weights="imagenet", # use `imagenet` pre-trained weights for encoder initialization
# in_channels=conf.input_dim, # model input channels (1 for gray-scale images, 3 for RGB, etc.)
# classes=conf.output_dim, # model output channels (number of classes in your dataset)
# # upsampling=int(conf.upsampling), # optional, final output upsampling, default is 8
# activation="relu"
# )
def _forward(self, data):
image = data["image"]
image = (image - self.mean_[:, None, None]) / self.std_[:, None, None]
output = self.fmodel(image)
# output = self.decoder(skip_features)
pred = {"feature_maps": [output]}
return pred
if __name__ == '__main__':
model=FeatureExtractor()