Spaces:
Build error
Build error
The_AI
Browse files
app.py
CHANGED
|
@@ -1,17 +1,28 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
import nltk
|
| 4 |
from youtube_transcript_api import YouTubeTranscriptApi
|
| 5 |
|
| 6 |
# Download NLTK data
|
| 7 |
nltk.download('punkt')
|
| 8 |
|
| 9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Function to fetch YouTube transcript
|
| 17 |
def fetch_transcript(url):
|
|
@@ -27,32 +38,38 @@ def fetch_transcript(url):
|
|
| 27 |
st.title("Multi-purpose Machine Learning App: WAVE_AI")
|
| 28 |
|
| 29 |
# Create tabs for different functionalities
|
| 30 |
-
tab1, tab2, tab3 = st.tabs(["Text Tag Generation", "Image Captioning", "YouTube Transcript"])
|
| 31 |
|
| 32 |
-
#
|
| 33 |
with tab1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
st.header("Text Tag Generation")
|
| 35 |
|
| 36 |
-
# Text area for user input
|
| 37 |
text = st.text_area("Enter the text for tag extraction:", height=200)
|
| 38 |
|
| 39 |
-
# Button to generate tags
|
| 40 |
if st.button("Generate Tags"):
|
| 41 |
if text:
|
| 42 |
try:
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
# Generate tags
|
| 47 |
-
output = model.generate(**inputs, num_beams=8, do_sample=True, min_length=10, max_length=64)
|
| 48 |
-
|
| 49 |
-
# Decode the output
|
| 50 |
-
decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
| 51 |
-
|
| 52 |
-
# Extract unique tags
|
| 53 |
tags = list(set(decoded_output.strip().split(", ")))
|
| 54 |
-
|
| 55 |
-
# Display the tags
|
| 56 |
st.write("**Generated Tags:**")
|
| 57 |
st.write(tags)
|
| 58 |
except Exception as e:
|
|
@@ -60,36 +77,27 @@ with tab1:
|
|
| 60 |
else:
|
| 61 |
st.warning("Please enter some text to generate tags.")
|
| 62 |
|
| 63 |
-
#
|
| 64 |
-
with
|
| 65 |
st.header("Image Captioning Extractor")
|
| 66 |
|
| 67 |
-
# Input for image URL
|
| 68 |
image_url = st.text_input("Enter the URL of the image:")
|
| 69 |
|
| 70 |
-
# If an image URL is provided
|
| 71 |
if image_url:
|
| 72 |
try:
|
| 73 |
-
# Display the image
|
| 74 |
st.image(image_url, caption="Provided Image", use_column_width=True)
|
| 75 |
-
|
| 76 |
-
# Generate the caption
|
| 77 |
caption = captioner(image_url)
|
| 78 |
-
|
| 79 |
-
# Display the caption
|
| 80 |
st.write("**Generated Caption:**")
|
| 81 |
st.write(caption[0]['generated_text'])
|
| 82 |
except Exception as e:
|
| 83 |
st.error(f"An error occurred: {e}")
|
| 84 |
|
| 85 |
# YouTube Transcript Tab
|
| 86 |
-
with
|
| 87 |
st.header("YouTube Video Transcript Extractor")
|
| 88 |
|
| 89 |
-
# Input for YouTube URL
|
| 90 |
youtube_url = st.text_input("Enter YouTube URL:")
|
| 91 |
|
| 92 |
-
# Button to get transcript
|
| 93 |
if st.button("Get Transcript"):
|
| 94 |
if youtube_url:
|
| 95 |
transcript = fetch_transcript(youtube_url)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
import nltk
|
| 4 |
from youtube_transcript_api import YouTubeTranscriptApi
|
| 5 |
|
| 6 |
# Download NLTK data
|
| 7 |
nltk.download('punkt')
|
| 8 |
|
| 9 |
+
# Load models and tokenizers
|
| 10 |
+
summary_model_name = 'utrobinmv/t5_summary_en_ru_zh_base_2048'
|
| 11 |
+
summary_model = T5ForConditionalGeneration.from_pretrained(summary_model_name)
|
| 12 |
+
summary_tokenizer = T5Tokenizer.from_pretrained(summary_model_name)
|
| 13 |
+
|
| 14 |
+
tag_tokenizer = AutoTokenizer.from_pretrained("fabiochiu/t5-base-tag-generation")
|
| 15 |
+
tag_model = AutoModelForSeq2SeqLM.from_pretrained("fabiochiu/t5-base-tag-generation")
|
| 16 |
+
|
| 17 |
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
| 18 |
|
| 19 |
+
# Function to summarize text
|
| 20 |
+
def summarize_text(text, prefix):
|
| 21 |
+
src_text = prefix + text
|
| 22 |
+
input_ids = summary_tokenizer(src_text, return_tensors="pt")
|
| 23 |
+
generated_tokens = summary_model.generate(**input_ids)
|
| 24 |
+
result = summary_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
| 25 |
+
return result[0]
|
| 26 |
|
| 27 |
# Function to fetch YouTube transcript
|
| 28 |
def fetch_transcript(url):
|
|
|
|
| 38 |
st.title("Multi-purpose Machine Learning App: WAVE_AI")
|
| 39 |
|
| 40 |
# Create tabs for different functionalities
|
| 41 |
+
tab1, tab2, tab3, tab4 = st.tabs(["Text Summarization", "Text Tag Generation", "Image Captioning", "YouTube Transcript"])
|
| 42 |
|
| 43 |
+
# Text Summarization Tab
|
| 44 |
with tab1:
|
| 45 |
+
st.header("Text Summarization")
|
| 46 |
+
|
| 47 |
+
input_text = st.text_area("Enter the text to summarize:", height=300)
|
| 48 |
+
|
| 49 |
+
if st.button("Generate Summaries"):
|
| 50 |
+
if input_text:
|
| 51 |
+
title1 = summarize_text(input_text, 'summary: ')
|
| 52 |
+
title2 = summarize_text(input_text, 'summary brief: ')
|
| 53 |
+
st.write("### Title 1")
|
| 54 |
+
st.write(title1)
|
| 55 |
+
st.write("### Title 2")
|
| 56 |
+
st.write(title2)
|
| 57 |
+
else:
|
| 58 |
+
st.warning("Please enter some text to summarize.")
|
| 59 |
+
|
| 60 |
+
# Text Tag Generation Tab
|
| 61 |
+
with tab2:
|
| 62 |
st.header("Text Tag Generation")
|
| 63 |
|
|
|
|
| 64 |
text = st.text_area("Enter the text for tag extraction:", height=200)
|
| 65 |
|
|
|
|
| 66 |
if st.button("Generate Tags"):
|
| 67 |
if text:
|
| 68 |
try:
|
| 69 |
+
inputs = tag_tokenizer([text], max_length=512, truncation=True, return_tensors="pt")
|
| 70 |
+
output = tag_model.generate(**inputs, num_beams=8, do_sample=True, min_length=10, max_length=64)
|
| 71 |
+
decoded_output = tag_tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
tags = list(set(decoded_output.strip().split(", ")))
|
|
|
|
|
|
|
| 73 |
st.write("**Generated Tags:**")
|
| 74 |
st.write(tags)
|
| 75 |
except Exception as e:
|
|
|
|
| 77 |
else:
|
| 78 |
st.warning("Please enter some text to generate tags.")
|
| 79 |
|
| 80 |
+
# Image Captioning Tab
|
| 81 |
+
with tab3:
|
| 82 |
st.header("Image Captioning Extractor")
|
| 83 |
|
|
|
|
| 84 |
image_url = st.text_input("Enter the URL of the image:")
|
| 85 |
|
|
|
|
| 86 |
if image_url:
|
| 87 |
try:
|
|
|
|
| 88 |
st.image(image_url, caption="Provided Image", use_column_width=True)
|
|
|
|
|
|
|
| 89 |
caption = captioner(image_url)
|
|
|
|
|
|
|
| 90 |
st.write("**Generated Caption:**")
|
| 91 |
st.write(caption[0]['generated_text'])
|
| 92 |
except Exception as e:
|
| 93 |
st.error(f"An error occurred: {e}")
|
| 94 |
|
| 95 |
# YouTube Transcript Tab
|
| 96 |
+
with tab4:
|
| 97 |
st.header("YouTube Video Transcript Extractor")
|
| 98 |
|
|
|
|
| 99 |
youtube_url = st.text_input("Enter YouTube URL:")
|
| 100 |
|
|
|
|
| 101 |
if st.button("Get Transcript"):
|
| 102 |
if youtube_url:
|
| 103 |
transcript = fetch_transcript(youtube_url)
|