Spaces:
Build error
Build error
| import streamlit as st | |
| import torch | |
| import requests | |
| from PIL import Image | |
| from transformers import BlipProcessor, BlipForConditionalGeneration | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| import nltk | |
| nltk.download('punkt') | |
| def load_models(): | |
| processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
| model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
| tokenizer = AutoTokenizer.from_pretrained("fabiochiu/t5-base-tag-generation") | |
| model2 = AutoModelForSeq2SeqLM.from_pretrained("fabiochiu/t5-base-tag-generation") | |
| return processor, model, tokenizer, model2 | |
| processor, model, tokenizer, model2 = load_models() | |
| def get_image_caption_and_tags(img_url): | |
| raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') | |
| # conditional image captioning | |
| alltexts = "a photography of" | |
| inputs = processor(raw_image, alltexts, return_tensors="pt") | |
| out = model.generate(**inputs) | |
| conditional_caption = processor.decode(out[0], skip_special_tokens=True) | |
| # unconditional image captioning | |
| inputs = processor(raw_image, return_tensors="pt") | |
| out = model.generate(**inputs) | |
| unconditional_caption = processor.decode(out[0], skip_special_tokens=True) | |
| inputs = tokenizer([alltexts], max_length=512, truncation=True, return_tensors="pt") | |
| output = model2.generate(**inputs, num_beams=8, do_sample=True, min_length=10, max_length=64) | |
| decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0] | |
| tags = list(set(decoded_output.strip().split(", "))) | |
| return raw_image, conditional_caption, unconditional_caption, tags | |
| st.title('Image Captioning and Tag Generation') | |
| img_url = st.text_input("Enter Image URL:") | |
| if st.button("Generate Captions and Tags"): | |
| with st.spinner('Processing...'): | |
| try: | |
| image, cond_caption, uncond_caption, tags = get_image_caption_and_tags(img_url) | |
| st.image(image, caption='Input Image', use_column_width=True) | |
| st.subheader("Conditional Caption:") | |
| st.write(cond_caption) | |
| st.subheader("Unconditional Caption:") | |
| st.write(uncond_caption) | |
| st.subheader("Generated Tags:") | |
| st.write(", ".join(tags)) | |
| except Exception as e: | |
| st.error(f"An error occurred: {e}") | |