Spaces:
Runtime error
Runtime error
update
Browse files- app.py +76 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[ ]:
|
5 |
+
|
6 |
+
|
7 |
+
import albumentations as A
|
8 |
+
from albumentations.pytorch.transforms import ToTensorV2
|
9 |
+
from timm import create_model
|
10 |
+
import torch
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
|
14 |
+
# In[ ]:
|
15 |
+
|
16 |
+
|
17 |
+
class TestDataset(torch.utils.data.Dataset):
|
18 |
+
def __init__(self,image,transforms = None):
|
19 |
+
self.image = [image]
|
20 |
+
self.transforms = transforms
|
21 |
+
|
22 |
+
def __getitem__(self,idx):
|
23 |
+
image = self.image[idx]
|
24 |
+
if self.transforms:
|
25 |
+
augmented = self.transforms(image=image)
|
26 |
+
image = augmented["image"]
|
27 |
+
return {'image':image}
|
28 |
+
def __len__(self):
|
29 |
+
return len(self.image)
|
30 |
+
|
31 |
+
def get_test_transform():
|
32 |
+
MEAN = [0.5176, 0.4169, 0.3637]
|
33 |
+
STD = [0.3010, 0.2723, 0.2672]
|
34 |
+
return A.Compose([
|
35 |
+
#A.resize((256,256)),
|
36 |
+
A.Normalize(MEAN,STD),
|
37 |
+
ToTensorV2(transpose_mask=False,p=1.0)
|
38 |
+
])
|
39 |
+
|
40 |
+
|
41 |
+
# In[ ]:
|
42 |
+
|
43 |
+
|
44 |
+
def predict_image(image):
|
45 |
+
test_dataset = TestDataset(image,transforms = get_test_transform())
|
46 |
+
test_loader = torch.utils.data.DataLoader(test_dataset,
|
47 |
+
batch_size = 1,
|
48 |
+
pin_memory = False,
|
49 |
+
num_workers = 8,
|
50 |
+
shuffle = False)
|
51 |
+
# Loading weights
|
52 |
+
for data in test_loader:
|
53 |
+
for key,value in data.items():
|
54 |
+
data[key] = value.to('cpu')
|
55 |
+
# Appending Output and Targets:
|
56 |
+
output = torch.sigmoid(model(data['image'])).cpu().detach().numpy()
|
57 |
+
dict_ = {'Down':float(1-output[0][0]),'Upside':float(output[0][0])}
|
58 |
+
return dict_
|
59 |
+
|
60 |
+
|
61 |
+
# In[ ]:
|
62 |
+
|
63 |
+
|
64 |
+
model = create_model('resnet18',pretrained = False,num_classes = 1)
|
65 |
+
checkpoint = torch.load('model.pt',map_location = 'cpu')
|
66 |
+
model.load_state_dict(checkpoint,strict = False)
|
67 |
+
|
68 |
+
|
69 |
+
# In[ ]:
|
70 |
+
|
71 |
+
|
72 |
+
title = "Upside-Down Detector"
|
73 |
+
interpretation='default'
|
74 |
+
enable_queue=True
|
75 |
+
gr.Interface(fn=predict_image,inputs=gr.inputs.Image(shape=(256, 256)),outputs=gr.outputs.Label(num_top_classes=2),title=title,interpretation=interpretation).launch(share = True)
|
76 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
albumentations
|
2 |
+
timm
|