Spaces:
Runtime error
Runtime error
| import os | |
| import torch | |
| import transformers | |
| from peft import PeftModel | |
| from transformers import LlamaForCausalLM, LlamaTokenizer # noqa: F402 | |
| BASE_MODEL = os.environ.get("BASE_MODEL", None) | |
| assert ( | |
| BASE_MODEL | |
| ), "Please specify a value for BASE_MODEL environment variable, e.g. `export BASE_MODEL=huggyllama/llama-7b`" # noqa: E501 | |
| tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL) | |
| base_model = LlamaForCausalLM.from_pretrained( | |
| BASE_MODEL, | |
| load_in_8bit=False, | |
| torch_dtype=torch.float16, | |
| device_map={"": "cpu"}, | |
| ) | |
| first_weight = base_model.model.layers[0].self_attn.q_proj.weight | |
| first_weight_old = first_weight.clone() | |
| lora_model = PeftModel.from_pretrained( | |
| base_model, | |
| "../outputs/lora-llama-clm-e2", | |
| device_map={"": "cpu"}, | |
| torch_dtype=torch.float16, | |
| ) | |
| lora_weight = lora_model.base_model.model.model.layers[0].self_attn.q_proj.weight | |
| assert torch.allclose(first_weight_old, first_weight) | |
| # merge weights - new merging method from peft | |
| lora_model = lora_model.merge_and_unload() | |
| lora_model.train(False) | |
| # did we do anything? | |
| assert not torch.allclose(first_weight_old, first_weight) | |
| lora_model_sd = lora_model.state_dict() | |
| deloreanized_sd = { | |
| k.replace("base_model.model.", ""): v | |
| for k, v in lora_model_sd.items() | |
| if "lora" not in k | |
| } | |
| LlamaForCausalLM.save_pretrained(base_model, '../models/legal-base-7b', state_dict=deloreanized_sd, max_shard_size="400MB") | |