Commit 
							
							·
						
						fdac493
	
1
								Parent(s):
							
							5a84a6b
								
Agasa
Browse files- Anxiety_ANN_model.h5 +3 -0
 - anxiety-test-c3553-firebase-adminsdk-5urg9-2928954445.json +13 -0
 - app.py +254 -0
 - requirements.txt +6 -0
 - scaler.pkl +3 -0
 
    	
        Anxiety_ANN_model.h5
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:877aaee1a85db2a238287a434fb5242e11d32cb0d0c41943c7d7d88e5aa43217
         
     | 
| 3 | 
         
            +
            size 73880
         
     | 
    	
        anxiety-test-c3553-firebase-adminsdk-5urg9-2928954445.json
    ADDED
    
    | 
         @@ -0,0 +1,13 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "type": "service_account",
         
     | 
| 3 | 
         
            +
              "project_id": "anxiety-test-c3553",
         
     | 
| 4 | 
         
            +
              "private_key_id": "29289544456d5fa39048fdd4bb242c9adb39c164",
         
     | 
| 5 | 
         
            +
              "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCqZfaGN/D5xLYq\nevUPHQ8bbYT0NbMhyB9Z2XXjkHq2POHkK0UUrOQN+FBkyf1FzmqGfO8RXKRrZXaM\nzDARf5QPDXYRiKAOMi/3/XSSGylBy0078HEhw2GXjUZwdRHaXeiuIaehsYXzjpRH\n9zhf9kxwz/58/90frDmu3qovBKL9+XOPRHV+ZCHHSyb3EsQsFpIwVcMkAvxLn5To\ntSs0eiuFNt+SH09n9WrwMxDCmvabjM5hQOTFyQbtjseaYUQkAp6H/QpkxdVxZj8Q\n8lKkq6/sXF3u359TecPATO2Tass7Net9u498o5a2NrJ4JjTNge9qHHPe9dHjAAW2\nsV+zZlRDAgMBAAECggEAAWH5vX5jt6FMg2+A1rrTrNNXV0blqX8D4wkcNg7yu6mc\nvGrpAixdcndrfW8eBPx+jEKabZGGE5NVZL8sMmAnYhLPUEUv+XYhpIR8qGeg3YA8\no/AlIGkgqVaXaYuC4icrUMV/X3d8gfka3wHb/A9dUzNWHJmixUw3v3UtBfl/PAWB\ngyjRb5SRiEzojTOKwAgyf0WV6PA9AnRbV56utdgaAoLOqNAO4GNuALb6z3aJztgE\n9iNfooE3IbOwj1BeWla0VRB9GBVxytcX5NdOy3DDWXZdsOXs978KU2mK5yuv2Gjw\nryvmuJzbWwDF9MMqgS6AmUEgTdXiRL8kHBWi27zqPQKBgQDibcwOkpqurh2ISrWq\npb3N/BwW+VXAsmUzCs4WY1wki6EpHZ7XbC1B7870p8457HHyr7XQu0dvK94bn2JK\n+Nx6wPoBQCEjaNhJKqMHfbVUptWMRIElLQ00fuDwlL+mhHh/sOiHnMvRFnzvgXzS\nsFbNXv7Bg7e/p06+tL1/cwjLfQKBgQDApuSz+MNzwQDsSe69V62yaG7xnx35XzZe\nsYxsaif3PS0+9dT9JaTU0hOBCUinW0MEbHPXPhEzHVSQ1iGNWfaMm0+u+szuec6m\nConAp8IneHen5jURuDjLnfvOJJ30ERB4BX47ATSZuC1GU0SXZd8gKTR1vWiRRbvc\n3dLWKoQqvwKBgF8LAW1Ygk8yTLkpyumPWoV8/nlyPVl+SFZNgcYJ/OJmLcapZUQ9\nZx3XQEKXsUvFAOuCb8nm4ow6mKd1lner0DhCim498esAFlFX8UiyrouS3+5Zzu/A\n4lsXqumxNmT6E+5dXq2V1kO0scqCytdRJ45bAopN9LIg0z/fc+9sZNOtAoGAO0zk\nBxXiq+XT7+fOChBMEiedRtiwtEr/hGRokhKXHL6DB+dJ2WZV94B2qnh+Ga240krD\n2ZRsXOyBVFflWgpAHwXLoFPo8tshpfCGeHvrApVNV6w/16V6LgsCMHELAc6i4B7o\nvSbg1xRfM098RJIB/XdRg5B6+ISbkB/jvzK1HicCgYEAsIF1KkB2335W93kTn94U\nwVAs5mOwJnow/VhYcKxCsxfxCuxYPAneFG91nYNgSTYBfJUu0IT9HVht3J0Sv4mh\nmjBvNjHPfLf8wLpCOpwxWsnt5G5n7j+rKtVZePMX6GqaKFj5RrXbi5VFslz8NvMF\nFvE2J61J1KaoriBX7xc7g2Q=\n-----END PRIVATE KEY-----\n",
         
     | 
| 6 | 
         
            +
              "client_email": "firebase-adminsdk-5urg9@anxiety-test-c3553.iam.gserviceaccount.com",
         
     | 
| 7 | 
         
            +
              "client_id": "114282250147198274627",
         
     | 
| 8 | 
         
            +
              "auth_uri": "https://accounts.google.com/o/oauth2/auth",
         
     | 
| 9 | 
         
            +
              "token_uri": "https://oauth2.googleapis.com/token",
         
     | 
| 10 | 
         
            +
              "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
         
     | 
| 11 | 
         
            +
              "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/firebase-adminsdk-5urg9%40anxiety-test-c3553.iam.gserviceaccount.com",
         
     | 
| 12 | 
         
            +
              "universe_domain": "googleapis.com"
         
     | 
| 13 | 
         
            +
            }
         
     | 
    	
        app.py
    ADDED
    
    | 
         @@ -0,0 +1,254 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import streamlit as st
         
     | 
| 2 | 
         
            +
            import pandas as pd
         
     | 
| 3 | 
         
            +
            import os
         
     | 
| 4 | 
         
            +
            import random
         
     | 
| 5 | 
         
            +
            import pickle
         
     | 
| 6 | 
         
            +
            import tensorflow as tf
         
     | 
| 7 | 
         
            +
            import firebase_admin
         
     | 
| 8 | 
         
            +
            from tensorflow.keras.models import Sequential
         
     | 
| 9 | 
         
            +
            from tensorflow.keras.layers import Dense
         
     | 
| 10 | 
         
            +
            from sklearn.preprocessing import StandardScaler
         
     | 
| 11 | 
         
            +
            from tensorflow.keras.models import load_model
         
     | 
| 12 | 
         
            +
            from firebase_admin import credentials, firestore
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            current_directory = os.path.dirname(__file__)
         
     | 
| 16 | 
         
            +
            firebase_config = os.path.join(current_directory,"anxiety-test-c3553-firebase-adminsdk-5urg9-2928954445.json")
         
     | 
| 17 | 
         
            +
            cred = credentials.Certificate(firebase_config)
         
     | 
| 18 | 
         
            +
            if not firebase_admin._apps:
         
     | 
| 19 | 
         
            +
                firebase_admin.initialize_app(cred)
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            fs = firestore.client()
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            def main():
         
     | 
| 24 | 
         
            +
                # Create a sidebar with navigation links
         
     | 
| 25 | 
         
            +
                st.sidebar.title("Navigation")
         
     | 
| 26 | 
         
            +
                page = st.sidebar.selectbox("Select a page", ["Home", "Wellness Test"])
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                if page == "Home":
         
     | 
| 29 | 
         
            +
                    show_home_page()
         
     | 
| 30 | 
         
            +
                elif page == "Wellness Test":
         
     | 
| 31 | 
         
            +
                    show_wellness_test_page()
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            def show_home_page():
         
     | 
| 34 | 
         
            +
                st.title("Student Wellness Test")
         
     | 
| 35 | 
         
            +
                st.subheader("A Website to test your wellness")
         
     | 
| 36 | 
         
            +
                st.write("A Project By Sugih Ahmad Fauzan and Marco William")
         
     | 
| 37 | 
         
            +
                st.write('To Start Test, Click on the left side bar and choose Wellness Test')
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            def show_wellness_test_page():
         
     | 
| 40 | 
         
            +
                st.title("Wellness Test App")
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                st.write("This app allows you to take the GAD (Generalized Anxiety Disorder), SWL (Satisfaction with Life), SPIN (Social Phobia Inventory), and answer some Personal Questions.")
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                # GAD Test
         
     | 
| 45 | 
         
            +
                st.header("GAD Test")
         
     | 
| 46 | 
         
            +
                gad_questions = ["Feeling nervous, anxious or on edge?",
         
     | 
| 47 | 
         
            +
                                 "Not being able to stop or control worrying?",
         
     | 
| 48 | 
         
            +
                                 "Worrying too much about different things?",
         
     | 
| 49 | 
         
            +
                                 "Trouble relaxing?",
         
     | 
| 50 | 
         
            +
                                 "Being so restless that it's hard to sit still?",
         
     | 
| 51 | 
         
            +
                                 "Becoming easily annoyed or irritable?",
         
     | 
| 52 | 
         
            +
                                 "Feeling afraid as if something awful might happen"]
         
     | 
| 53 | 
         
            +
                gad_responses = collect_gad_responses(gad_questions)
         
     | 
| 54 | 
         
            +
                gad_total_score = sum(gad_responses.values())
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                st.divider()
         
     | 
| 57 | 
         
            +
                # SWL Test
         
     | 
| 58 | 
         
            +
                st.header("SWL Test")
         
     | 
| 59 | 
         
            +
                swl_questions = ["In most ways, my life is close to my ideal.",
         
     | 
| 60 | 
         
            +
                                 "The conditions of my life are excellent.",
         
     | 
| 61 | 
         
            +
                                 "I am satisfied with my life.",
         
     | 
| 62 | 
         
            +
                                 "So far, I have gotten the important things I want in life.",
         
     | 
| 63 | 
         
            +
                                 "If I could live my life over, I would change almost nothing"]
         
     | 
| 64 | 
         
            +
                swl_responses = collect_swl_responses(swl_questions)
         
     | 
| 65 | 
         
            +
                swl_total_score = sum(swl_responses.values())
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                st.divider()
         
     | 
| 68 | 
         
            +
                # SPIN Test
         
     | 
| 69 | 
         
            +
                st.header("SPIN Test")
         
     | 
| 70 | 
         
            +
                spin_questions = ["I avoid talking to people I don’t know.",
         
     | 
| 71 | 
         
            +
                                  "I am afraid to speak in public.",
         
     | 
| 72 | 
         
            +
                                  "I avoid activities in which I am the center of attention.",
         
     | 
| 73 | 
         
            +
                                  "Being criticized scares me.",
         
     | 
| 74 | 
         
            +
                                  "I avoid making phone calls.",
         
     | 
| 75 | 
         
            +
                                  "I avoid parties and social events.",
         
     | 
| 76 | 
         
            +
                                  "I avoid participating in class or at meetings.",
         
     | 
| 77 | 
         
            +
                                  "I avoid participating in small groups.",
         
     | 
| 78 | 
         
            +
                                  "I avoid eating with others.",
         
     | 
| 79 | 
         
            +
                                  "I am uncomfortable writing in front of others.",
         
     | 
| 80 | 
         
            +
                                  "I avoid talking to authority figures.",
         
     | 
| 81 | 
         
            +
                                  "I avoid using public restrooms.",
         
     | 
| 82 | 
         
            +
                                  "I avoid expressing disagreement with others.",
         
     | 
| 83 | 
         
            +
                                  "I avoid talking to strangers.",
         
     | 
| 84 | 
         
            +
                                  "I avoid eye contact with others.",
         
     | 
| 85 | 
         
            +
                                  "I am uncomfortable talking to people in authority.",
         
     | 
| 86 | 
         
            +
                                  "I am afraid to date or ask someone out on a date"]
         
     | 
| 87 | 
         
            +
                spin_responses = collect_spin_responses(spin_questions)
         
     | 
| 88 | 
         
            +
                spin_total_score = sum(spin_responses.values())
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                st.divider()
         
     | 
| 91 | 
         
            +
                # Personal Questions
         
     | 
| 92 | 
         
            +
                st.header("Personal Questions")
         
     | 
| 93 | 
         
            +
                income = st.number_input("1. How much do you earn in a month?", value=0, step=1)
         
     | 
| 94 | 
         
            +
                age = st.number_input("2. How old are you?", value=18, step=1)
         
     | 
| 95 | 
         
            +
                work_options = {"Not Working" :0, "Part Time":1, "Full Time":2}
         
     | 
| 96 | 
         
            +
                work = st.selectbox("3. What is your employment status?", options=list(work_options.keys()))
         
     | 
| 97 | 
         
            +
                degree_options = {"Still in School" : 0, "Bachelor":1, "Master":2, "Doctor":3, "Professor":4}
         
     | 
| 98 | 
         
            +
                degree = st.selectbox("4. What is your highest degree?", options=list(degree_options.keys()))
         
     | 
| 99 | 
         
            +
                confidence_rating = st.slider("5. Rate your confidence when talking to somebody (1 lowest, 5 highest)", min_value=1, max_value=5, value=3)
         
     | 
| 100 | 
         
            +
                gender_options = {"Male": 0, "Female": 1}
         
     | 
| 101 | 
         
            +
                gender = st.selectbox("6. What is your gender?", options=list(gender_options.keys()))
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                # Collect all answers in lists
         
     | 
| 104 | 
         
            +
                GAD_T = gad_total_score/21
         
     | 
| 105 | 
         
            +
                SWL_T = swl_total_score/25
         
     | 
| 106 | 
         
            +
                SPIN_T = spin_total_score/51
         
     | 
| 107 | 
         
            +
                GAD_T = round(GAD_T,6)
         
     | 
| 108 | 
         
            +
                SWL_T = round(SWL_T,6)
         
     | 
| 109 | 
         
            +
                SPIN_T = round(SPIN_T,6)
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                all_gad_answers = list(gad_responses.values())
         
     | 
| 112 | 
         
            +
                all_swl_answers = list(swl_responses.values())
         
     | 
| 113 | 
         
            +
                all_spin_answers = list(spin_responses.values())
         
     | 
| 114 | 
         
            +
                all_personal_answers = [confidence_rating,income, gender_options[gender], age, work_options[work], degree_options[degree], GAD_T, SWL_T, SPIN_T]
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                all_answers = all_gad_answers + all_swl_answers + all_spin_answers + all_personal_answers
         
     | 
| 117 | 
         
            +
                display_df = pd.DataFrame([all_answers], columns=get_feature_names())
         
     | 
| 118 | 
         
            +
                df = display_df.copy()
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                # scaler_path = "scaler.pkl"  # Replace with the actual path to your model file
         
     | 
| 121 | 
         
            +
                # with open(scaler_path, 'rb') as file:
         
     | 
| 122 | 
         
            +
                #     data = pickle.load(file)
         
     | 
| 123 | 
         
            +
                #     scaler = data['scaler']
         
     | 
| 124 | 
         
            +
                
         
     | 
| 125 | 
         
            +
                # model = load_model('Anxiety_ANN_model.h5')
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
                # result = model.predict(df)
         
     | 
| 128 | 
         
            +
                # result = int(result*100)
         
     | 
| 129 | 
         
            +
                
         
     | 
| 130 | 
         
            +
                # st.write("Kemungkinan anda mengalami Anxiety sebesar : ",result,"%")
         
     | 
| 131 | 
         
            +
                # df = scaler.transform(df)
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                st.subheader("DataFrame of Answers")
         
     | 
| 134 | 
         
            +
                st.dataframe(df)
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
                pred = st.button('Prediksi')
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                if pred:
         
     | 
| 139 | 
         
            +
                    # Pass the values to the prediction page
         
     | 
| 140 | 
         
            +
                    result = predict_result(df)
         
     | 
| 141 | 
         
            +
                    st.write("Kemungkinan anda mengalami Anxiety sebesar : ",result,"%")
         
     | 
| 142 | 
         
            +
                    threshold = 50
         
     | 
| 143 | 
         
            +
                    thresholded_result = 1 if result > threshold else 0
         
     | 
| 144 | 
         
            +
                    df['Label'] = thresholded_result
         
     | 
| 145 | 
         
            +
                    save_dataframe_to_firestore(df)
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
            def collect_gad_responses(questions):
         
     | 
| 149 | 
         
            +
                # Initialize a dictionary to store responses
         
     | 
| 150 | 
         
            +
                responses = {}
         
     | 
| 151 | 
         
            +
                # Iterate through GAD questions and collect user responses
         
     | 
| 152 | 
         
            +
                for i, question in enumerate(questions, start=1):
         
     | 
| 153 | 
         
            +
                    st.subheader(f"GAD{i}")
         
     | 
| 154 | 
         
            +
                    st.write(f"**Question**: {question}")
         
     | 
| 155 | 
         
            +
                    # Answer options for GAD
         
     | 
| 156 | 
         
            +
                    response = st.radio(f"Select your response (GAD{i}):",
         
     | 
| 157 | 
         
            +
                                        options=["Not at all", "Several days", "More than half the days", "Nearly every day"],
         
     | 
| 158 | 
         
            +
                                        key=f"gad_radio_{i}")
         
     | 
| 159 | 
         
            +
                    # Map response to a numerical value for scoring
         
     | 
| 160 | 
         
            +
                    if response == "Not at all":
         
     | 
| 161 | 
         
            +
                        score = 0
         
     | 
| 162 | 
         
            +
                    elif response == "Several days":
         
     | 
| 163 | 
         
            +
                        score = 1
         
     | 
| 164 | 
         
            +
                    elif response == "More than half the days":
         
     | 
| 165 | 
         
            +
                        score = 2
         
     | 
| 166 | 
         
            +
                    else:
         
     | 
| 167 | 
         
            +
                        score = 3
         
     | 
| 168 | 
         
            +
                    # Store the response and score
         
     | 
| 169 | 
         
            +
                    responses[f'gad{i}'] = score
         
     | 
| 170 | 
         
            +
                return responses
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
            def collect_swl_responses(questions):
         
     | 
| 173 | 
         
            +
                # Initialize a dictionary to store responses
         
     | 
| 174 | 
         
            +
                responses = {}
         
     | 
| 175 | 
         
            +
                # Iterate through SWL questions and collect user responses
         
     | 
| 176 | 
         
            +
                for i, question in enumerate(questions, start=1):
         
     | 
| 177 | 
         
            +
                    st.subheader(f"SWL{i}")
         
     | 
| 178 | 
         
            +
                    st.write(f"**Question**: {question}")
         
     | 
| 179 | 
         
            +
                    # Answer options for SWL
         
     | 
| 180 | 
         
            +
                    response = st.radio(f"Select your response (SWL{i}):",
         
     | 
| 181 | 
         
            +
                                        options=["Strongly Disagree", "Disagree", "Neither Agree nor Disagree", "Agree", "Strongly Agree"],
         
     | 
| 182 | 
         
            +
                                        key=f"swl_radio_{i}")
         
     | 
| 183 | 
         
            +
                    # Map response to a numerical value for scoring
         
     | 
| 184 | 
         
            +
                    if response == "Strongly Disagree":
         
     | 
| 185 | 
         
            +
                        score = 1
         
     | 
| 186 | 
         
            +
                    elif response == "Disagree":
         
     | 
| 187 | 
         
            +
                        score = 2
         
     | 
| 188 | 
         
            +
                    elif response == "Neither Agree nor Disagree":
         
     | 
| 189 | 
         
            +
                        score = 3
         
     | 
| 190 | 
         
            +
                    elif response == "Agree":
         
     | 
| 191 | 
         
            +
                        score = 4
         
     | 
| 192 | 
         
            +
                    else:
         
     | 
| 193 | 
         
            +
                        score = 5
         
     | 
| 194 | 
         
            +
                    # Store the response and score
         
     | 
| 195 | 
         
            +
                    responses[f'swl{i}'] = score
         
     | 
| 196 | 
         
            +
                return responses
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
            def collect_spin_responses(questions):
         
     | 
| 199 | 
         
            +
                # Initialize a dictionary to store responses
         
     | 
| 200 | 
         
            +
                responses = {}
         
     | 
| 201 | 
         
            +
                # Iterate through SPIN questions and collect user responses
         
     | 
| 202 | 
         
            +
                for i, question in enumerate(questions, start=1):
         
     | 
| 203 | 
         
            +
                    st.subheader(f"SPIN{i}")
         
     | 
| 204 | 
         
            +
                    st.write(f"**Question**: {question}")
         
     | 
| 205 | 
         
            +
                    # Answer options for SPIN
         
     | 
| 206 | 
         
            +
                    response = st.radio(f"Select your response (SPIN{i}):",
         
     | 
| 207 | 
         
            +
                                        options=["Not at all", "A little bit", "Somewhat", "Very much"],
         
     | 
| 208 | 
         
            +
                                        key=f"spin_radio_{i}")
         
     | 
| 209 | 
         
            +
                    # Map response to a numerical value for scoring
         
     | 
| 210 | 
         
            +
                    if response == "Not at all":
         
     | 
| 211 | 
         
            +
                        score = 0
         
     | 
| 212 | 
         
            +
                    elif response == "A little bit":
         
     | 
| 213 | 
         
            +
                        score = 1
         
     | 
| 214 | 
         
            +
                    elif response == "Somewhat":
         
     | 
| 215 | 
         
            +
                        score = 2
         
     | 
| 216 | 
         
            +
                    else:
         
     | 
| 217 | 
         
            +
                        score = 3
         
     | 
| 218 | 
         
            +
                    # Store the response and score
         
     | 
| 219 | 
         
            +
                    responses[f'spin{i}'] = score
         
     | 
| 220 | 
         
            +
                return responses
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
            def get_feature_names():
         
     | 
| 223 | 
         
            +
                gad_features = [f'GAD{i}' for i in range(1, 8)]
         
     | 
| 224 | 
         
            +
                swl_features = [f'SWL{i}' for i in range(1, 6)]
         
     | 
| 225 | 
         
            +
                spin_features = [f'SPIN{i}' for i in range(1, 18)]
         
     | 
| 226 | 
         
            +
                personal_features = ['Narcissism','earnings','Gender','Age','Work','Degree','GAD_T', 'SWL_T', 'SPIN_T']
         
     | 
| 227 | 
         
            +
                return gad_features + swl_features + spin_features + personal_features
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
            def predict_result(answers):
         
     | 
| 230 | 
         
            +
                scaler_path = "scaler.pkl"  # Replace with the actual path to your model file
         
     | 
| 231 | 
         
            +
                with open(scaler_path, 'rb') as file:
         
     | 
| 232 | 
         
            +
                    data = pickle.load(file)
         
     | 
| 233 | 
         
            +
                    scaler = data['scaler']
         
     | 
| 234 | 
         
            +
                
         
     | 
| 235 | 
         
            +
                model = load_model('Anxiety_ANN_model.h5')
         
     | 
| 236 | 
         
            +
                df = answers
         
     | 
| 237 | 
         
            +
                # df = scaler.transform(df)
         
     | 
| 238 | 
         
            +
                result = model.predict(df)
         
     | 
| 239 | 
         
            +
                result = int(result*100)
         
     | 
| 240 | 
         
            +
                return result
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
            def save_dataframe_to_firestore(dataframe):
         
     | 
| 243 | 
         
            +
                # Convert DataFrame to dictionary
         
     | 
| 244 | 
         
            +
                data_dict = dataframe.to_dict(orient='records')
         
     | 
| 245 | 
         
            +
             
     | 
| 246 | 
         
            +
                # Add your Firestore collection and document name
         
     | 
| 247 | 
         
            +
                doc_ref = fs.collection("user_data").add({"data": data_dict})
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                return "Successfull Write to Database"
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 252 | 
         
            +
                main()
         
     | 
| 253 | 
         
            +
                
         
     | 
| 254 | 
         
            +
             
     | 
    	
        requirements.txt
    ADDED
    
    | 
         @@ -0,0 +1,6 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            numpy==1.26.2
         
     | 
| 2 | 
         
            +
            pandas==2.1.3
         
     | 
| 3 | 
         
            +
            scikit-learn==1.3.2
         
     | 
| 4 | 
         
            +
            scipy==1.11.4
         
     | 
| 5 | 
         
            +
            tensorflow==2.15.0
         
     | 
| 6 | 
         
            +
            firebase-admin==6.2.0
         
     | 
    	
        scaler.pkl
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:bddfe75d9cc5f35fcf49ded354cef9b1afebc8d3ba4a47a14a4fc91cefd307ef
         
     | 
| 3 | 
         
            +
            size 1777
         
     |