Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoConfig, AutoProcessor, AutoModelForCausalLM | |
import spaces | |
from PIL import Image | |
import subprocess | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
import numpy as np | |
import requests | |
from io import BytesIO | |
from unittest.mock import patch | |
from transformers.dynamic_module_utils import get_imports | |
import os | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
model_dir = "medieval-data/florence2-medieval-bbox-zone-detection" | |
# Load the configuration | |
config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_dir, | |
trust_remote_code=True | |
) | |
processor = AutoProcessor.from_pretrained( | |
model_dir, | |
trust_remote_code=True | |
) | |
TITLE = "# [Florence-2- Medieval Manuscript Layout Parsing Demo](https://huggingface.co/medieval-data/florence2-medieval-bbox-zone-detection)" | |
DESCRIPTION = "The demo for Florence-2 fine-tuned on CATMuS Segmentation Dataset. This app has two models: one for line detection and one for zone detection." | |
# Define a color map for different labels | |
colormap = plt.cm.get_cmap('tab20') | |
def process_image(image): | |
max_size = 1000 | |
prompt = "<OD>" | |
# Calculate the scaling factor | |
original_width, original_height = image.size | |
scale = min(max_size / original_width, max_size / original_height) | |
new_width = int(original_width * scale) | |
new_height = int(original_height * scale) | |
# Resize the image | |
image = image.resize((new_width, new_height)) | |
inputs = processor(text=prompt, images=image, return_tensors="pt") | |
generated_ids = model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
do_sample=False, | |
num_beams=3 | |
) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
result = processor.post_process_generation(generated_text, task="<OD>", image_size=(image.width, image.height)) | |
return result, image | |
def visualize_bboxes(result, image): | |
fig, ax = plt.subplots(1, figsize=(15, 15)) | |
ax.imshow(image) | |
# Create a set of unique labels | |
unique_labels = set(result['<OD>']['labels']) | |
# Create a dictionary to map labels to colors | |
color_dict = {label: colormap(i/len(unique_labels)) for i, label in enumerate(unique_labels)} | |
# Add bounding boxes and labels to the plot | |
for bbox, label in zip(result['<OD>']['bboxes'], result['<OD>']['labels']): | |
x, y, width, height = bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1] | |
rect = patches.Rectangle((x, y), width, height, linewidth=2, edgecolor=color_dict[label], facecolor='none') | |
ax.add_patch(rect) | |
plt.text(x, y, label, fontsize=12, bbox=dict(facecolor=color_dict[label], alpha=0.5)) | |
plt.axis('off') | |
return fig | |
def run_example(image): | |
if isinstance(image, str): # If image is a URL | |
response = requests.get(image) | |
image = Image.open(BytesIO(response.content)) | |
elif isinstance(image, np.ndarray): # If image is a numpy array | |
image = Image.fromarray(image) | |
result, processed_image = process_image(image) | |
fig = visualize_bboxes(result, processed_image) | |
# Convert matplotlib figure to image | |
img_buf = BytesIO() | |
fig.savefig(img_buf, format='png') | |
img_buf.seek(0) | |
output_image = Image.open(img_buf) | |
return output_image | |
css = """ | |
#output { | |
height: 1000px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(TITLE) | |
gr.Markdown(DESCRIPTION) | |
with gr.Tab(label="Florence-2 Image Processing"): | |
input_img = gr.Image(label="Input Picture", elem_id="input_img", height=300, width=300) | |
submit_btn = gr.Button(value="Submit") | |
with gr.Row(): | |
output_img = gr.Image(label="Output Image with Bounding Boxes") | |
gr.Examples( | |
examples=[ | |
["https://huggingface.co/datasets/CATMuS/medieval-segmentation/resolve/main/data/train/cambridge-corpus-christi-college-ms-111/page-002-of-003.jpg"], | |
], | |
inputs=[input_img], | |
outputs=[output_img], | |
fn=run_example, | |
cache_examples=True, | |
label='Try the examples below' | |
) | |
submit_btn.click(run_example, [input_img], [output_img]) | |
demo.launch(debug=True) |