Spaces:
Runtime error
Runtime error
| # Copyright (c) Tencent Inc. All rights reserved. | |
| import time | |
| import os | |
| os.environ['PYTORCH_JIT'] = "0" | |
| os.system('mim install mmcv==2.0.1') | |
| # import spaces | |
| import sys | |
| import argparse | |
| import os.path as osp | |
| from io import BytesIO | |
| from functools import partial | |
| # import spaces | |
| from mmengine.runner import Runner | |
| from mmengine.dataset import Compose | |
| from mmengine.runner.amp import autocast | |
| from mmengine.config import Config, DictAction, ConfigDict | |
| from mmdet.datasets import CocoDataset | |
| from mmyolo.registry import RUNNERS | |
| import cv2 | |
| # import onnx | |
| import torch | |
| # import onnxsim | |
| import numpy as np | |
| import gradio as gr | |
| from PIL import Image | |
| import supervision as sv | |
| from torchvision.ops import nms | |
| from transformers import (AutoTokenizer, CLIPTextModelWithProjection) | |
| from transformers import (AutoProcessor, CLIPVisionModelWithProjection) | |
| BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator(thickness=2) | |
| MASK_ANNOTATOR = sv.MaskAnnotator() | |
| class LabelAnnotator(sv.LabelAnnotator): | |
| def resolve_text_background_xyxy( | |
| center_coordinates, | |
| text_wh, | |
| position, | |
| ): | |
| center_x, center_y = center_coordinates | |
| text_w, text_h = text_wh | |
| return center_x, center_y, center_x + text_w, center_y + text_h | |
| LABEL_ANNOTATOR = LabelAnnotator(text_padding=4, | |
| text_scale=0.5, | |
| text_thickness=1) | |
| # @spaces.GPU | |
| def generate_image_embeddings(prompt_image, | |
| vision_encoder, | |
| vision_processor, | |
| projector, | |
| device='cuda:0'): | |
| prompt_image = prompt_image.convert('RGB') | |
| inputs = vision_processor(images=[prompt_image], | |
| return_tensors="pt", | |
| padding=True) | |
| inputs = inputs.to(device) | |
| image_outputs = vision_encoder(**inputs) | |
| img_feats = image_outputs.image_embeds.view(1, -1) | |
| img_feats = img_feats / img_feats.norm(p=2, dim=-1, keepdim=True) | |
| if projector is not None: | |
| img_feats = projector(img_feats) | |
| return img_feats | |
| # @spaces.GPU | |
| def run_image(runner, | |
| vision_encoder, | |
| vision_processor, | |
| padding_token, | |
| image, | |
| text, | |
| prompt_image, | |
| add_padding, | |
| max_num_boxes, | |
| score_thr, | |
| nms_thr, | |
| image_path='./work_dirs/demo.png'): | |
| image = image.convert('RGB') | |
| if prompt_image is not None: | |
| texts = [['object'], [' ']] | |
| projector = None | |
| if hasattr(runner.model, 'image_prompt_encoder'): | |
| projector = runner.model.image_prompt_encoder.projector | |
| print(projector) | |
| prompt_embeddings = generate_image_embeddings( | |
| prompt_image, | |
| vision_encoder=vision_encoder, | |
| vision_processor=vision_processor, | |
| projector=projector) | |
| if add_padding == 'padding': | |
| prompt_embeddings = torch.cat([prompt_embeddings, padding_token], | |
| dim=0) | |
| prompt_embeddings = prompt_embeddings / prompt_embeddings.norm( | |
| p=2, dim=-1, keepdim=True) | |
| runner.model.num_test_classes = prompt_embeddings.shape[0] | |
| runner.model.setembeddings(prompt_embeddings[None]) | |
| else: | |
| runner.model.setembeddings(None) | |
| texts = [[t.strip()] for t in text.split(',')] | |
| data_info = dict(img_id=0, img=np.array(image), texts=texts) | |
| data_info = runner.pipeline(data_info) | |
| data_batch = dict(inputs=data_info['inputs'].unsqueeze(0), | |
| data_samples=[data_info['data_samples']]) | |
| with autocast(enabled=False), torch.no_grad(): | |
| if (prompt_image is not None) and ('texts' in data_batch['data_samples'][ | |
| 0]): | |
| del data_batch['data_samples'][0]['texts'] | |
| output = runner.model.test_step(data_batch)[0] | |
| pred_instances = output.pred_instances | |
| keep = nms(pred_instances.bboxes, | |
| pred_instances.scores, | |
| iou_threshold=nms_thr) | |
| pred_instances = pred_instances[keep] | |
| pred_instances = pred_instances[pred_instances.scores.float() > score_thr] | |
| if len(pred_instances.scores) > max_num_boxes: | |
| indices = pred_instances.scores.float().topk(max_num_boxes)[1] | |
| pred_instances = pred_instances[indices] | |
| pred_instances = pred_instances.cpu().numpy() | |
| if 'masks' in pred_instances: | |
| masks = pred_instances['masks'] | |
| else: | |
| masks = None | |
| detections = sv.Detections(xyxy=pred_instances['bboxes'], | |
| class_id=pred_instances['labels'], | |
| confidence=pred_instances['scores'], | |
| mask=masks) | |
| labels = [ | |
| f"{texts[class_id][0]} {confidence:0.2f}" for class_id, confidence in | |
| zip(detections.class_id, detections.confidence) | |
| ] | |
| image = np.array(image) | |
| image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert RGB to BGR | |
| image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections) | |
| image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels) | |
| if masks is not None: | |
| image = MASK_ANNOTATOR.annotate(image, detections) | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB | |
| image = Image.fromarray(image) | |
| return image | |
| MARKDOWN = """ | |
| # YOLO-World-Image π: YOLO-World with Image Prompts | |
| Now everyone can use YOLO-World and some image prompts to detect corresponding objects in images, no longer relying on text prompts! | |
| This demo is actively under construction and the YOLO-World-Image is an initial (**beta**) version! | |
| <div style='display:flex; gap: 0.25rem; align-items: center'> | |
| <a href="https://yoloworld.cc"><img src="https://img.shields.io/badge/Project-Page-green"></a> | |
| <a href="https://arxiv.org/abs/2401.17270"><img src="https://img.shields.io/badge/arXiv-Paper-red"></a> | |
| <a href="https://github.com/AILab-CVC/YOLO-World"><img src="https://img.shields.io/badge/GitHub-Code-blue"></a> | |
| <a href="https://huggingface.co/spaces/stevengrove/YOLO-World"><img src="https://img.shields.io/badge/π€HugginngFace-Spaces-orange"></a> | |
| </div> | |
| ### Simple guide: | |
| * upload the image prompts | |
| * adjust the hyperparameters: | |
| - score threshold | |
| - nms threshold | |
| - max number of detections | |
| - whether using padding: adding padding might improve the confidence scores of the predictions. It will be removed in the coming updates. | |
| * run with 'submit'! | |
| """ | |
| def demo(runner, vision_encoder, vision_processor, padding_embed): | |
| with gr.Blocks(title="YOLO-World") as demo: | |
| with gr.Row(): | |
| gr.Markdown(MARKDOWN) | |
| with gr.Row(): | |
| image = gr.Image(type='pil', label='input image') | |
| output_image = gr.Image(type='pil', label='output image') | |
| with gr.Row(): | |
| with gr.Column(scale=0.3): | |
| with gr.Row(): | |
| prompt_image = gr.Image(type='pil', | |
| label='Image Prompts', | |
| height=300) | |
| with gr.Row(): | |
| add_padding = gr.Radio(["padding", "none"], | |
| label="Padding Prompt", | |
| info="whether add padding prompt") | |
| with gr.Column(scale=0.3): | |
| with gr.Row(): | |
| input_text = gr.Textbox( | |
| lines=7, | |
| label='Text Prompts:\nEnter the classes to be detected, ' | |
| 'separated by comma', | |
| value=', '.join(CocoDataset.METAINFO['classes']), | |
| elem_id='textbox') | |
| with gr.Column(scale=0.4): | |
| max_num_boxes = gr.Slider(minimum=1, | |
| maximum=300, | |
| value=100, | |
| step=1, | |
| interactive=True, | |
| label='Maximum Number Boxes') | |
| score_thr = gr.Slider(minimum=0, | |
| maximum=1, | |
| value=0.05, | |
| step=0.001, | |
| interactive=True, | |
| label='Score Threshold') | |
| nms_thr = gr.Slider(minimum=0, | |
| maximum=1, | |
| value=0.7, | |
| step=0.001, | |
| interactive=True, | |
| label='NMS Threshold') | |
| with gr.Row(): | |
| submit = gr.Button('Submit') | |
| clear = gr.Button('Clear') | |
| exp_image_dir = "./gradio_examples/image_prompts/images/" | |
| exp_prompt_dir = "./gradio_examples/image_prompts/prompts/" | |
| example = gr.Examples( | |
| examples=[ | |
| [ | |
| exp_image_dir + "0.jpeg", exp_prompt_dir + "0.png", "", | |
| "none", 0.3, 0.5, 100 | |
| ], | |
| [ | |
| exp_image_dir + "1.png", exp_prompt_dir + "1.png", "", | |
| "padding", 0.2, 0.1, 100 | |
| ], | |
| [ | |
| exp_image_dir + "3.png", exp_prompt_dir + "3.png", "", | |
| "padding", 0.3, 0.5, 100 | |
| ], | |
| ], | |
| inputs=[ | |
| image, prompt_image, input_text, add_padding, score_thr, | |
| nms_thr, max_num_boxes | |
| ], | |
| ) | |
| submit.click( | |
| partial(run_image, runner, vision_encoder, vision_processor, | |
| padding_embed), [ | |
| image, | |
| input_text, | |
| prompt_image, | |
| add_padding, | |
| max_num_boxes, | |
| score_thr, | |
| nms_thr, | |
| ], [output_image]) | |
| clear.click(lambda: [None, None, '', None], None, | |
| [image, prompt_image, input_text, output_image]) | |
| demo.launch() # port 80 does not work for me | |
| if __name__ == '__main__': | |
| # args = parse_args() | |
| config = "configs/prompt_tuning_coco/yolo_world_v2_l_vlpan_bn_2e-4_80e_8gpus_image_prompt_demo.py" | |
| checkpoint = "weights/yolo_world_v2_l_image_prompt_adapter-719a7afb.pth" | |
| # load config | |
| cfg = Config.fromfile(config) | |
| cfg.compile = False | |
| if cfg.get('work_dir', None) is None: | |
| cfg.work_dir = osp.join('./work_dirs', | |
| osp.splitext(osp.basename(config))[0]) | |
| cfg.load_from = checkpoint | |
| if 'runner_type' not in cfg: | |
| runner = Runner.from_cfg(cfg) | |
| else: | |
| runner = RUNNERS.build(cfg) | |
| # runner.test() | |
| runner.call_hook('before_run') | |
| runner.load_or_resume() | |
| pipeline = cfg.test_dataloader.dataset.pipeline | |
| pipeline[0].type = 'mmdet.LoadImageFromNDArray' | |
| runner.pipeline = Compose(pipeline) | |
| runner.model.eval() | |
| # init vision encoder | |
| clip_model = "openai/clip-vit-base-patch32" | |
| vision_model = CLIPVisionModelWithProjection.from_pretrained(clip_model) | |
| processor = AutoProcessor.from_pretrained(clip_model) | |
| device = 'cuda' | |
| vision_model.to(device) | |
| texts = [' '] | |
| tokenizer = AutoTokenizer.from_pretrained(clip_model) | |
| text_model = CLIPTextModelWithProjection.from_pretrained(clip_model) | |
| # device = 'cuda:0' | |
| text_model.to(device) | |
| texts = tokenizer(text=texts, return_tensors='pt', padding=True) | |
| texts = texts.to(device) | |
| text_outputs = text_model(**texts) | |
| txt_feats = text_outputs.text_embeds | |
| txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True) | |
| txt_feats = txt_feats.reshape(-1, txt_feats.shape[-1]) | |
| txt_feats = txt_feats[0].unsqueeze(0) | |
| demo(runner, vision_model, processor, txt_feats) | |