wsj1995 commited on
Commit
8aad0a5
·
1 Parent(s): 3b36241

feat: init

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .dockerignore +198 -0
  2. .gitattributes +23 -10
  3. .gitignore +195 -0
  4. Colab-Inference.ipynb +191 -0
  5. Colab-WebUI.ipynb +117 -0
  6. Docker/install_wrapper.sh +33 -0
  7. Docker/miniconda_install.sh +70 -0
  8. Dockerfile +62 -0
  9. GPT_SoVITS/AR/__init__.py +0 -0
  10. GPT_SoVITS/AR/data/__init__.py +0 -0
  11. GPT_SoVITS/AR/data/bucket_sampler.py +149 -0
  12. GPT_SoVITS/AR/data/data_module.py +81 -0
  13. GPT_SoVITS/AR/data/dataset.py +320 -0
  14. GPT_SoVITS/AR/models/__init__.py +0 -0
  15. GPT_SoVITS/AR/models/t2s_lightning_module.py +145 -0
  16. GPT_SoVITS/AR/models/t2s_lightning_module_onnx.py +110 -0
  17. GPT_SoVITS/AR/models/t2s_model.py +935 -0
  18. GPT_SoVITS/AR/models/t2s_model_onnx.py +394 -0
  19. GPT_SoVITS/AR/models/utils.py +282 -0
  20. GPT_SoVITS/AR/modules/__init__.py +0 -0
  21. GPT_SoVITS/AR/modules/activation.py +413 -0
  22. GPT_SoVITS/AR/modules/activation_onnx.py +188 -0
  23. GPT_SoVITS/AR/modules/embedding.py +78 -0
  24. GPT_SoVITS/AR/modules/embedding_onnx.py +63 -0
  25. GPT_SoVITS/AR/modules/lr_schedulers.py +85 -0
  26. GPT_SoVITS/AR/modules/optim.py +593 -0
  27. GPT_SoVITS/AR/modules/patched_mha_with_cache.py +428 -0
  28. GPT_SoVITS/AR/modules/patched_mha_with_cache_onnx.py +85 -0
  29. GPT_SoVITS/AR/modules/scaling.py +320 -0
  30. GPT_SoVITS/AR/modules/transformer.py +362 -0
  31. GPT_SoVITS/AR/modules/transformer_onnx.py +281 -0
  32. GPT_SoVITS/AR/text_processing/__init__.py +0 -0
  33. GPT_SoVITS/AR/text_processing/phonemizer.py +72 -0
  34. GPT_SoVITS/AR/text_processing/symbols.py +12 -0
  35. GPT_SoVITS/AR/utils/__init__.py +36 -0
  36. GPT_SoVITS/AR/utils/initialize.py +39 -0
  37. GPT_SoVITS/AR/utils/io.py +30 -0
  38. GPT_SoVITS/BigVGAN/LICENSE +21 -0
  39. GPT_SoVITS/BigVGAN/README.md +266 -0
  40. GPT_SoVITS/BigVGAN/activations.py +122 -0
  41. GPT_SoVITS/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
  42. GPT_SoVITS/BigVGAN/alias_free_activation/cuda/activation1d.py +69 -0
  43. GPT_SoVITS/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
  44. GPT_SoVITS/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
  45. GPT_SoVITS/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
  46. GPT_SoVITS/BigVGAN/alias_free_activation/cuda/load.py +82 -0
  47. GPT_SoVITS/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
  48. GPT_SoVITS/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
  49. GPT_SoVITS/BigVGAN/alias_free_activation/torch/act.py +30 -0
  50. GPT_SoVITS/BigVGAN/alias_free_activation/torch/filter.py +99 -0
.dockerignore ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GPT_SoVITS/pretrained_models/*
2
+ tools/asr/models/*
3
+ tools/uvr5/uvr5_weights/*
4
+
5
+ .git
6
+ .DS_Store
7
+ .vscode
8
+ *.pyc
9
+ env
10
+ runtime
11
+ .idea
12
+ output
13
+ logs
14
+ SoVITS_weights*/
15
+ GPT_weights*/
16
+ TEMP
17
+ weight.json
18
+ ffmpeg*
19
+ ffprobe*
20
+ cfg.json
21
+ speakers.json
22
+ ref_audios
23
+
24
+ # Byte-compiled / optimized / DLL files
25
+ __pycache__/
26
+ **/__pycache__/
27
+ *.py[cod]
28
+ *$py.class
29
+
30
+ # C extensions
31
+ *.so
32
+
33
+ # Distribution / packaging
34
+ .Python
35
+ build/
36
+ develop-eggs/
37
+ dist/
38
+ downloads/
39
+ eggs/
40
+ .eggs/
41
+ lib/
42
+ lib64/
43
+ parts/
44
+ sdist/
45
+ var/
46
+ wheels/
47
+ share/python-wheels/
48
+ *.egg-info/
49
+ .installed.cfg
50
+ *.egg
51
+ MANIFEST
52
+
53
+ # PyInstaller
54
+ # Usually these files are written by a python script from a template
55
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
56
+ *.manifest
57
+ *.spec
58
+
59
+ # Installer logs
60
+ pip-log.txt
61
+ pip-delete-this-directory.txt
62
+
63
+ # Unit test / coverage reports
64
+ htmlcov/
65
+ .tox/
66
+ .nox/
67
+ .coverage
68
+ .coverage.*
69
+ .cache
70
+ nosetests.xml
71
+ coverage.xml
72
+ *.cover
73
+ *.py,cover
74
+ .hypothesis/
75
+ .pytest_cache/
76
+ cover/
77
+
78
+ # Translations
79
+ *.mo
80
+ *.pot
81
+
82
+ # Django stuff:
83
+ *.log
84
+ local_settings.py
85
+ db.sqlite3
86
+ db.sqlite3-journal
87
+
88
+ # Flask stuff:
89
+ instance/
90
+ .webassets-cache
91
+
92
+ # Scrapy stuff:
93
+ .scrapy
94
+
95
+ # Sphinx documentation
96
+ docs/_build/
97
+
98
+ # PyBuilder
99
+ .pybuilder/
100
+ target/
101
+
102
+ # Jupyter Notebook
103
+ .ipynb_checkpoints
104
+
105
+ # IPython
106
+ profile_default/
107
+ ipython_config.py
108
+
109
+ # pyenv
110
+ # For a library or package, you might want to ignore these files since the code is
111
+ # intended to run in multiple environments; otherwise, check them in:
112
+ .python-version
113
+
114
+ # pipenv
115
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
116
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
117
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
118
+ # install all needed dependencies.
119
+ Pipfile.lock
120
+
121
+ # UV
122
+ # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
123
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
124
+ # commonly ignored for libraries.
125
+ uv.lock
126
+
127
+ # poetry
128
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
129
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
130
+ # commonly ignored for libraries.
131
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
132
+ poetry.lock
133
+
134
+ # pdm
135
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
136
+ #pdm.lock
137
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
138
+ # in version control.
139
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
140
+ .pdm.toml
141
+ .pdm-python
142
+ .pdm-build/
143
+
144
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
145
+ __pypackages__/
146
+
147
+ # Celery stuff
148
+ celerybeat-schedule
149
+ celerybeat.pid
150
+
151
+ # SageMath parsed files
152
+ *.sage.py
153
+
154
+ # Environments
155
+ .env
156
+ .venv
157
+ env/
158
+ venv/
159
+ ENV/
160
+ env.bak/
161
+ venv.bak/
162
+
163
+ # Spyder project settings
164
+ .spyderproject
165
+ .spyproject
166
+
167
+ # Rope project settings
168
+ .ropeproject
169
+
170
+ # mkdocs documentation
171
+ /site
172
+
173
+ # mypy
174
+ .mypy_cache/
175
+ .dmypy.json
176
+ dmypy.json
177
+
178
+ # Pyre type checker
179
+ .pyre/
180
+
181
+ # pytype static type analyzer
182
+ .pytype/
183
+
184
+ # Cython debug symbols
185
+ cython_debug/
186
+
187
+ # PyCharm
188
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
189
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
190
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
191
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
192
+ .idea/
193
+
194
+ # Ruff stuff:
195
+ .ruff_cache/
196
+
197
+ # PyPI configuration file
198
+ .pypirc
.gitattributes CHANGED
@@ -1,35 +1,48 @@
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
4
  *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
7
  *.gz filter=lfs diff=lfs merge=lfs -text
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
  *.model filter=lfs diff=lfs merge=lfs -text
13
  *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
  *.onnx filter=lfs diff=lfs merge=lfs -text
17
  *.ot filter=lfs diff=lfs merge=lfs -text
18
  *.parquet filter=lfs diff=lfs merge=lfs -text
19
  *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
  *.pt filter=lfs diff=lfs merge=lfs -text
23
  *.pth filter=lfs diff=lfs merge=lfs -text
24
  *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
  *.xz filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
  *.bz2 filter=lfs diff=lfs merge=lfs -text
 
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
7
  *.gz filter=lfs diff=lfs merge=lfs -text
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
 
11
  *.model filter=lfs diff=lfs merge=lfs -text
12
  *.msgpack filter=lfs diff=lfs merge=lfs -text
 
 
13
  *.onnx filter=lfs diff=lfs merge=lfs -text
14
  *.ot filter=lfs diff=lfs merge=lfs -text
15
  *.parquet filter=lfs diff=lfs merge=lfs -text
16
  *.pb filter=lfs diff=lfs merge=lfs -text
 
 
17
  *.pt filter=lfs diff=lfs merge=lfs -text
18
  *.pth filter=lfs diff=lfs merge=lfs -text
19
  *.rar filter=lfs diff=lfs merge=lfs -text
 
20
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
22
  *.tflite filter=lfs diff=lfs merge=lfs -text
23
  *.tgz filter=lfs diff=lfs merge=lfs -text
 
24
  *.xz filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *.tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.db* filter=lfs diff=lfs merge=lfs -text
29
+ *.ark* filter=lfs diff=lfs merge=lfs -text
30
+ **/*ckpt*data* filter=lfs diff=lfs merge=lfs -text
31
+ **/*ckpt*.meta filter=lfs diff=lfs merge=lfs -text
32
+ **/*ckpt*.index filter=lfs diff=lfs merge=lfs -text
33
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
34
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
35
+ *.gguf* filter=lfs diff=lfs merge=lfs -text
36
+ *.ggml filter=lfs diff=lfs merge=lfs -text
37
+ *.llamafile* filter=lfs diff=lfs merge=lfs -text
38
+ *.pt2 filter=lfs diff=lfs merge=lfs -text
39
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
40
+ *.npy filter=lfs diff=lfs merge=lfs -text
41
+ *.npz filter=lfs diff=lfs merge=lfs -text
42
+ *.pickle filter=lfs diff=lfs merge=lfs -text
43
+ *.pkl filter=lfs diff=lfs merge=lfs -text
44
+ *.tar filter=lfs diff=lfs merge=lfs -text
45
+ *.wasm filter=lfs diff=lfs merge=lfs -text
46
  *.zst filter=lfs diff=lfs merge=lfs -text
47
+ *.csv filter=lfs diff=lfs merge=lfs -text
48
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .DS_Store
2
+ .vscode
3
+ __pycache__
4
+ *.pyc
5
+ env
6
+ runtime
7
+ .idea
8
+ output
9
+ logs
10
+ SoVITS_weights*/
11
+ GPT_weights*/
12
+ TEMP
13
+ weight.json
14
+ ffmpeg*
15
+ ffprobe*
16
+ cfg.json
17
+ speakers.json
18
+ ref_audios
19
+ tools/AP_BWE_main/24kto48k/*
20
+ !tools/AP_BWE_main/24kto48k/readme.txt
21
+
22
+ # Byte-compiled / optimized / DLL files
23
+ __pycache__/
24
+ *.py[cod]
25
+ *$py.class
26
+
27
+ # C extensions
28
+ *.so
29
+
30
+ # Distribution / packaging
31
+ .Python
32
+ build/
33
+ develop-eggs/
34
+ dist/
35
+ downloads/
36
+ eggs/
37
+ .eggs/
38
+ lib/
39
+ lib64/
40
+ parts/
41
+ sdist/
42
+ var/
43
+ wheels/
44
+ share/python-wheels/
45
+ *.egg-info/
46
+ .installed.cfg
47
+ *.egg
48
+ MANIFEST
49
+
50
+ # PyInstaller
51
+ # Usually these files are written by a python script from a template
52
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
53
+ *.manifest
54
+ *.spec
55
+
56
+ # Installer logs
57
+ pip-log.txt
58
+ pip-delete-this-directory.txt
59
+
60
+ # Unit test / coverage reports
61
+ htmlcov/
62
+ .tox/
63
+ .nox/
64
+ .coverage
65
+ .coverage.*
66
+ .cache
67
+ nosetests.xml
68
+ coverage.xml
69
+ *.cover
70
+ *.py,cover
71
+ .hypothesis/
72
+ .pytest_cache/
73
+ cover/
74
+
75
+ # Translations
76
+ *.mo
77
+ *.pot
78
+
79
+ # Django stuff:
80
+ *.log
81
+ local_settings.py
82
+ db.sqlite3
83
+ db.sqlite3-journal
84
+
85
+ # Flask stuff:
86
+ instance/
87
+ .webassets-cache
88
+
89
+ # Scrapy stuff:
90
+ .scrapy
91
+
92
+ # Sphinx documentation
93
+ docs/_build/
94
+
95
+ # PyBuilder
96
+ .pybuilder/
97
+ target/
98
+
99
+ # Jupyter Notebook
100
+ .ipynb_checkpoints
101
+
102
+ # IPython
103
+ profile_default/
104
+ ipython_config.py
105
+
106
+ # pyenv
107
+ # For a library or package, you might want to ignore these files since the code is
108
+ # intended to run in multiple environments; otherwise, check them in:
109
+ # .python-version
110
+
111
+ # pipenv
112
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
113
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
114
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
115
+ # install all needed dependencies.
116
+ #Pipfile.lock
117
+
118
+ # UV
119
+ # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
120
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
121
+ # commonly ignored for libraries.
122
+ #uv.lock
123
+
124
+ # poetry
125
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
126
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
127
+ # commonly ignored for libraries.
128
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
129
+ #poetry.lock
130
+
131
+ # pdm
132
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
133
+ #pdm.lock
134
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
135
+ # in version control.
136
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
137
+ .pdm.toml
138
+ .pdm-python
139
+ .pdm-build/
140
+
141
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
142
+ __pypackages__/
143
+
144
+ # Celery stuff
145
+ celerybeat-schedule
146
+ celerybeat.pid
147
+
148
+ # SageMath parsed files
149
+ *.sage.py
150
+
151
+ # Environments
152
+ .env
153
+ .venv
154
+ env/
155
+ venv/
156
+ ENV/
157
+ env.bak/
158
+ venv.bak/
159
+
160
+ # Spyder project settings
161
+ .spyderproject
162
+ .spyproject
163
+
164
+ # Rope project settings
165
+ .ropeproject
166
+
167
+ # mkdocs documentation
168
+ /site
169
+
170
+ # mypy
171
+ .mypy_cache/
172
+ .dmypy.json
173
+ dmypy.json
174
+
175
+ # Pyre type checker
176
+ .pyre/
177
+
178
+ # pytype static type analyzer
179
+ .pytype/
180
+
181
+ # Cython debug symbols
182
+ cython_debug/
183
+
184
+ # PyCharm
185
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
186
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
187
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
188
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
189
+ #.idea/
190
+
191
+ # Ruff stuff:
192
+ .ruff_cache/
193
+
194
+ # PyPI configuration file
195
+ .pypirc
Colab-Inference.ipynb ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "<a href=\"https://colab.research.google.com/github/RVC-Boss/GPT-SoVITS/blob/main/Colab-Inference.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "# GPT-SoVITS Infer"
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "markdown",
19
+ "metadata": {},
20
+ "source": [
21
+ "## Env Setup (Run Once Only)\n",
22
+ "## 环境配置, 只需运行一次"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "markdown",
27
+ "metadata": {},
28
+ "source": [
29
+ "### 1."
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": null,
35
+ "metadata": {
36
+ "id": "e9b7iFV3dm1f"
37
+ },
38
+ "outputs": [],
39
+ "source": [
40
+ "%%writefile /content/setup.sh\n",
41
+ "set -e\n",
42
+ "\n",
43
+ "cd /content\n",
44
+ "\n",
45
+ "git clone https://github.com/RVC-Boss/GPT-SoVITS.git\n",
46
+ "\n",
47
+ "cd GPT-SoVITS\n",
48
+ "\n",
49
+ "mkdir -p GPT_weights\n",
50
+ "\n",
51
+ "mkdir -p SoVITS_weights\n",
52
+ "\n",
53
+ "if conda env list | awk '{print $1}' | grep -Fxq \"GPTSoVITS\"; then\n",
54
+ " :\n",
55
+ "else\n",
56
+ " conda create -n GPTSoVITS python=3.10 -y\n",
57
+ "fi\n",
58
+ "\n",
59
+ "source activate GPTSoVITS\n",
60
+ "\n",
61
+ "pip install ipykernel\n",
62
+ "\n",
63
+ "bash install.sh --device CU126 --source HF"
64
+ ]
65
+ },
66
+ {
67
+ "cell_type": "markdown",
68
+ "metadata": {},
69
+ "source": [
70
+ "### 2."
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": null,
76
+ "metadata": {
77
+ "cellView": "form",
78
+ "id": "0NgxXg5sjv7z"
79
+ },
80
+ "outputs": [],
81
+ "source": [
82
+ "%pip install -q condacolab\n",
83
+ "import condacolab\n",
84
+ "condacolab.install_from_url(\"https://repo.anaconda.com/archive/Anaconda3-2024.10-1-Linux-x86_64.sh\")\n",
85
+ "!cd /content && bash setup.sh"
86
+ ]
87
+ },
88
+ {
89
+ "cell_type": "markdown",
90
+ "metadata": {},
91
+ "source": [
92
+ "# Download Model"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "markdown",
97
+ "metadata": {},
98
+ "source": [
99
+ "### Download From HuggingFace"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": null,
105
+ "metadata": {
106
+ "cellView": "form",
107
+ "id": "vbZY-LnM0tzq"
108
+ },
109
+ "outputs": [],
110
+ "source": [
111
+ "# Modify These\n",
112
+ "USER_ID = \"AkitoP\"\n",
113
+ "REPO_NAME = \"GPT-SoVITS-v2-aegi\"\n",
114
+ "BRANCH = \"main\"\n",
115
+ "GPT_PATH = \"new_aegigoe-e100.ckpt\"\n",
116
+ "SOVITS_PATH = \"new_aegigoe_e60_s32220.pth\"\n",
117
+ "\n",
118
+ "# Do Not Modify\n",
119
+ "HF_BASE = \"https://huggingface.co\"\n",
120
+ "REPO_ID = f\"{USER_ID}/{REPO_NAME}\"\n",
121
+ "GPT_URL = f\"{HF_BASE}/{REPO_ID}/blob/{BRANCH}/{GPT_PATH}\"\n",
122
+ "SOVITS_URL = f\"{HF_BASE}/{REPO_ID}/blob/{BRANCH}/{SOVITS_PATH}\"\n",
123
+ "\n",
124
+ "!cd \"/content/GPT-SoVITS/GPT_weights\" && wget \"{GPT_URL}\"\n",
125
+ "!cd \"/content/GPT-SoVITS/SoVITS_weights\" && wget \"{SOVITS_URL}\"\n"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "markdown",
130
+ "metadata": {},
131
+ "source": [
132
+ "### Download From ModelScope"
133
+ ]
134
+ },
135
+ {
136
+ "cell_type": "code",
137
+ "execution_count": null,
138
+ "metadata": {},
139
+ "outputs": [],
140
+ "source": [
141
+ "# Modify These\n",
142
+ "USER_ID = \"aihobbyist\"\n",
143
+ "REPO_NAME = \"GPT-SoVits-V2-models\"\n",
144
+ "BRANCH = \"master\"\n",
145
+ "GPT_PATH = \"Genshin_Impact/EN/GPT_GenshinImpact_EN_5.1.ckpt\"\n",
146
+ "SOVITS_PATH = \"Wuthering_Waves/CN/SV_WutheringWaves_CN_1.3.pth\"\n",
147
+ "\n",
148
+ "# Do Not Modify\n",
149
+ "HF_BASE = \"https://www.modelscope.cn/models\"\n",
150
+ "REPO_ID = f\"{USER_ID}/{REPO_NAME}\"\n",
151
+ "GPT_URL = f\"{HF_BASE}/{REPO_ID}/resolve/{BRANCH}/{GPT_PATH}\"\n",
152
+ "SOVITS_URL = f\"{HF_BASE}/{REPO_ID}/resolve/{BRANCH}/{SOVITS_PATH}\"\n",
153
+ "\n",
154
+ "!cd \"/content/GPT-SoVITS/GPT_weights\" && wget \"{GPT_URL}\"\n",
155
+ "!cd \"/content/GPT-SoVITS/SoVITS_weights\" && wget \"{SOVITS_URL}\""
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "markdown",
160
+ "metadata": {},
161
+ "source": [
162
+ "# Launch WebUI\n",
163
+ "# 启动 WebUI"
164
+ ]
165
+ },
166
+ {
167
+ "cell_type": "code",
168
+ "execution_count": null,
169
+ "metadata": {
170
+ "cellView": "form",
171
+ "id": "4oRGUzkrk8C7"
172
+ },
173
+ "outputs": [],
174
+ "source": [
175
+ "!cd /content/GPT-SoVITS && source activate GPTSoVITS && export is_share=True && python webui.py"
176
+ ]
177
+ }
178
+ ],
179
+ "metadata": {
180
+ "accelerator": "GPU",
181
+ "colab": {
182
+ "provenance": []
183
+ },
184
+ "kernelspec": {
185
+ "display_name": "Python 3",
186
+ "name": "python3"
187
+ }
188
+ },
189
+ "nbformat": 4,
190
+ "nbformat_minor": 0
191
+ }
Colab-WebUI.ipynb ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {
6
+ "colab_type": "text",
7
+ "id": "view-in-github"
8
+ },
9
+ "source": [
10
+ "<a href=\"https://colab.research.google.com/github/RVC-Boss/GPT-SoVITS/blob/main/Colab-WebUI.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
11
+ ]
12
+ },
13
+ {
14
+ "cell_type": "markdown",
15
+ "metadata": {},
16
+ "source": [
17
+ "# GPT-SoVITS WebUI"
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "markdown",
22
+ "metadata": {
23
+ "id": "_o6a8GS2lWQM"
24
+ },
25
+ "source": [
26
+ "## Env Setup (Run Once Only)\n",
27
+ "## 环境配置, 只需运行一次"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "markdown",
32
+ "metadata": {},
33
+ "source": [
34
+ "### 1."
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "metadata": {},
41
+ "outputs": [],
42
+ "source": [
43
+ "%%writefile /content/setup.sh\n",
44
+ "set -e\n",
45
+ "\n",
46
+ "cd /content\n",
47
+ "\n",
48
+ "git clone https://github.com/RVC-Boss/GPT-SoVITS.git\n",
49
+ "\n",
50
+ "cd GPT-SoVITS\n",
51
+ "\n",
52
+ "if conda env list | awk '{print $1}' | grep -Fxq \"GPTSoVITS\"; then\n",
53
+ " :\n",
54
+ "else\n",
55
+ " conda create -n GPTSoVITS python=3.10 -y\n",
56
+ "fi\n",
57
+ "\n",
58
+ "source activate GPTSoVITS\n",
59
+ "\n",
60
+ "pip install ipykernel\n",
61
+ "\n",
62
+ "bash install.sh --device CU126 --source HF --download-uvr5"
63
+ ]
64
+ },
65
+ {
66
+ "cell_type": "markdown",
67
+ "metadata": {},
68
+ "source": [
69
+ "### 2."
70
+ ]
71
+ },
72
+ {
73
+ "cell_type": "code",
74
+ "execution_count": null,
75
+ "metadata": {},
76
+ "outputs": [],
77
+ "source": [
78
+ "%pip install -q condacolab\n",
79
+ "import condacolab\n",
80
+ "condacolab.install_from_url(\"https://repo.anaconda.com/archive/Anaconda3-2024.10-1-Linux-x86_64.sh\")\n",
81
+ "!cd /content && bash setup.sh"
82
+ ]
83
+ },
84
+ {
85
+ "cell_type": "markdown",
86
+ "metadata": {},
87
+ "source": [
88
+ "## Launch WebUI\n",
89
+ "## 启动 WebUI"
90
+ ]
91
+ },
92
+ {
93
+ "cell_type": "code",
94
+ "execution_count": null,
95
+ "metadata": {
96
+ "id": "4oRGUzkrk8C7"
97
+ },
98
+ "outputs": [],
99
+ "source": [
100
+ "!cd /content/GPT-SoVITS && source activate GPTSoVITS && export is_share=True && python webui.py"
101
+ ]
102
+ }
103
+ ],
104
+ "metadata": {
105
+ "accelerator": "GPU",
106
+ "colab": {
107
+ "include_colab_link": true,
108
+ "provenance": []
109
+ },
110
+ "kernelspec": {
111
+ "display_name": "Python 3",
112
+ "name": "python3"
113
+ }
114
+ },
115
+ "nbformat": 4,
116
+ "nbformat_minor": 0
117
+ }
Docker/install_wrapper.sh ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" &>/dev/null && pwd)"
4
+
5
+ cd "$SCRIPT_DIR" || exit 1
6
+
7
+ cd .. || exit 1
8
+
9
+ set -e
10
+
11
+ source "$HOME/miniconda3/etc/profile.d/conda.sh"
12
+
13
+ mkdir -p GPT_SoVITS
14
+
15
+ mkdir -p GPT_SoVITS/text
16
+
17
+ ln -s /workspace/models/pretrained_models /workspace/GPT-SoVITS/GPT_SoVITS/pretrained_models
18
+
19
+ ln -s /workspace/models/G2PWModel /workspace/GPT-SoVITS/GPT_SoVITS/text/G2PWModel
20
+
21
+ bash install.sh --device "CU${CUDA_VERSION//./}" --source HF
22
+
23
+ pip cache purge
24
+
25
+ pip show torch
26
+
27
+ rm -rf /tmp/* /var/tmp/*
28
+
29
+ rm -rf "$HOME/miniconda3/pkgs"
30
+
31
+ mkdir -p "$HOME/miniconda3/pkgs"
32
+
33
+ rm -rf /root/.conda /root/.cache
Docker/miniconda_install.sh ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ set -e
4
+
5
+ SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" &>/dev/null && pwd)"
6
+
7
+ cd "$SCRIPT_DIR" || exit 1
8
+
9
+ cd .. || exit 1
10
+
11
+ if [ -d "$HOME/miniconda3" ]; then
12
+ exit 0
13
+ fi
14
+
15
+ WORKFLOW=${WORKFLOW:-"false"}
16
+ TARGETPLATFORM=${TARGETPLATFORM:-"linux/amd64"}
17
+
18
+ if [ "$WORKFLOW" = "true" ]; then
19
+ WGET_CMD=(wget -nv --tries=25 --wait=5 --read-timeout=40 --retry-on-http-error=404)
20
+ else
21
+ WGET_CMD=(wget --tries=25 --wait=5 --read-timeout=40 --retry-on-http-error=404)
22
+ fi
23
+
24
+ if [ "$TARGETPLATFORM" = "linux/amd64" ]; then
25
+ "${WGET_CMD[@]}" -O miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-py311_25.3.1-1-Linux-x86_64.sh
26
+ elif [ "$TARGETPLATFORM" = "linux/arm64" ]; then
27
+ "${WGET_CMD[@]}" -O miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-py311_25.3.1-1-Linux-aarch64.sh
28
+ else
29
+ exit 1
30
+ fi
31
+
32
+ LOG_PATH="/tmp/miniconda-install.log"
33
+
34
+ bash miniconda.sh -b -p "$HOME/miniconda3" >"$LOG_PATH" 2>&1
35
+
36
+ if [ $? -eq 0 ]; then
37
+ echo "== Miniconda Installed =="
38
+ else
39
+ echo "Failed to Install miniconda"
40
+ tail -n 50 "$LOG_PATH"
41
+ exit 1
42
+ fi
43
+
44
+ rm miniconda.sh
45
+
46
+ source "$HOME/miniconda3/etc/profile.d/conda.sh"
47
+
48
+ "$HOME/miniconda3/bin/conda" config --add channels conda-forge
49
+
50
+ "$HOME/miniconda3/bin/conda" update -q --all -y 1>/dev/null
51
+
52
+ "$HOME/miniconda3/bin/conda" install python=3.11 -q -y
53
+
54
+ "$HOME/miniconda3/bin/conda" install gcc=14 gxx ffmpeg cmake make unzip -q -y
55
+
56
+ if [ "$CUDA_VERSION" = "12.8" ]; then
57
+ "$HOME/miniconda3/bin/pip" install torch torchaudio --no-cache-dir --index-url https://download.pytorch.org/whl/cu128
58
+ elif [ "$CUDA_VERSION" = "12.6" ]; then
59
+ "$HOME/miniconda3/bin/pip" install torch==2.6 torchaudio --no-cache-dir --index-url https://download.pytorch.org/whl/cu126
60
+ fi
61
+
62
+ "$HOME/miniconda3/bin/pip" cache purge
63
+
64
+ rm $LOG_PATH
65
+
66
+ rm -rf "$HOME/miniconda3/pkgs"
67
+
68
+ mkdir -p "$HOME/miniconda3/pkgs"
69
+
70
+ rm -rf "$HOME/.conda" "$HOME/.cache"
Dockerfile ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ARG CUDA_VERSION=12.6
2
+ ARG TORCH_BASE=full
3
+
4
+ FROM xxxxrt666/torch-base:cu${CUDA_VERSION}-${TORCH_BASE}
5
+
6
+ LABEL maintainer="XXXXRT"
7
+ LABEL version="V4"
8
+ LABEL description="Docker image for GPT-SoVITS"
9
+
10
+ ARG CUDA_VERSION=12.6
11
+
12
+ ENV CUDA_VERSION=${CUDA_VERSION}
13
+
14
+ SHELL ["/bin/bash", "-c"]
15
+
16
+ WORKDIR /workspace/GPT-SoVITS
17
+
18
+ COPY Docker /workspace/GPT-SoVITS/Docker/
19
+
20
+ ARG LITE=false
21
+ ENV LITE=${LITE}
22
+
23
+ ARG WORKFLOW=false
24
+ ENV WORKFLOW=${WORKFLOW}
25
+
26
+ ARG TARGETPLATFORM
27
+ ENV TARGETPLATFORM=${TARGETPLATFORM}
28
+
29
+ RUN bash Docker/miniconda_install.sh
30
+
31
+ COPY extra-req.txt /workspace/GPT-SoVITS/
32
+
33
+ COPY requirements.txt /workspace/GPT-SoVITS/
34
+
35
+ COPY install.sh /workspace/GPT-SoVITS/
36
+
37
+ RUN bash Docker/install_wrapper.sh
38
+
39
+ EXPOSE 9871 9872 9873 9874 9880
40
+
41
+ ENV PYTHONPATH="/workspace/GPT-SoVITS"
42
+
43
+ RUN conda init bash && echo "conda activate base" >> ~/.bashrc
44
+
45
+ WORKDIR /workspace
46
+
47
+ RUN rm -rf /workspace/GPT-SoVITS
48
+
49
+ WORKDIR /workspace/GPT-SoVITS
50
+
51
+ COPY . /workspace/GPT-SoVITS
52
+
53
+ CMD ["/bin/bash", "-c", "\
54
+ rm -rf /workspace/GPT-SoVITS/GPT_SoVITS/pretrained_models && \
55
+ rm -rf /workspace/GPT-SoVITS/GPT_SoVITS/text/G2PWModel && \
56
+ rm -rf /workspace/GPT-SoVITS/tools/asr/models && \
57
+ rm -rf /workspace/GPT-SoVITS/tools/uvr5/uvr5_weights && \
58
+ ln -s /workspace/models/pretrained_models /workspace/GPT-SoVITS/GPT_SoVITS/pretrained_models && \
59
+ ln -s /workspace/models/G2PWModel /workspace/GPT-SoVITS/GPT_SoVITS/text/G2PWModel && \
60
+ ln -s /workspace/models/asr_models /workspace/GPT-SoVITS/tools/asr/models && \
61
+ ln -s /workspace/models/uvr5_weights /workspace/GPT-SoVITS/tools/uvr5/uvr5_weights && \
62
+ exec bash"]
GPT_SoVITS/AR/__init__.py ADDED
File without changes
GPT_SoVITS/AR/data/__init__.py ADDED
File without changes
GPT_SoVITS/AR/data/bucket_sampler.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/bucket_sampler.py
2
+ # reference: https://github.com/lifeiteng/vall-e
3
+ import itertools
4
+ import math
5
+ import random
6
+ from random import shuffle
7
+ from typing import Iterator, Optional, TypeVar
8
+
9
+ import torch
10
+ import torch.distributed as dist
11
+ from torch.utils.data import Dataset, Sampler
12
+
13
+ __all__ = [
14
+ "DistributedBucketSampler",
15
+ ]
16
+
17
+ T_co = TypeVar("T_co", covariant=True)
18
+
19
+
20
+ class DistributedBucketSampler(Sampler[T_co]):
21
+ r"""
22
+ sort the dataset wrt. input length
23
+ divide samples into buckets
24
+ sort within buckets
25
+ divide buckets into batches
26
+ sort batches
27
+ """
28
+
29
+ def __init__(
30
+ self,
31
+ dataset: Dataset,
32
+ num_replicas: Optional[int] = None,
33
+ rank: Optional[int] = None,
34
+ shuffle: bool = True,
35
+ seed: int = 0,
36
+ drop_last: bool = False,
37
+ batch_size: int = 32,
38
+ ) -> None:
39
+ if num_replicas is None:
40
+ if not dist.is_available():
41
+ raise RuntimeError("Requires distributed package to be available")
42
+ num_replicas = dist.get_world_size() if torch.cuda.is_available() else 1
43
+ if rank is None:
44
+ if not dist.is_available():
45
+ raise RuntimeError("Requires distributed package to be available")
46
+ rank = dist.get_rank() if torch.cuda.is_available() else 0
47
+ if torch.cuda.is_available():
48
+ torch.cuda.set_device(rank)
49
+ if rank >= num_replicas or rank < 0:
50
+ raise ValueError("Invalid rank {}, rank should be in the interval [0, {}]".format(rank, num_replicas - 1))
51
+ self.dataset = dataset
52
+ self.num_replicas = num_replicas
53
+ self.rank = rank
54
+ self.epoch = 0
55
+ self.drop_last = drop_last
56
+ # If the dataset length is evenly divisible by # of replicas, then there
57
+ # is no need to drop any data, since the dataset will be split equally.
58
+ if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type]
59
+ # Split to nearest available length that is evenly divisible.
60
+ # This is to ensure each rank receives the same amount of data when
61
+ # using this Sampler.
62
+ self.num_samples = math.ceil(
63
+ (len(self.dataset) - self.num_replicas) / self.num_replicas, # type: ignore[arg-type]
64
+ )
65
+ else:
66
+ self.num_samples = math.ceil(
67
+ len(self.dataset) / self.num_replicas,
68
+ ) # type: ignore[arg-type]
69
+ self.total_size = self.num_samples * self.num_replicas
70
+ self.shuffle = shuffle
71
+ self.seed = seed
72
+ self.batch_size = batch_size
73
+ self.id_with_length = self._get_sample_lengths()
74
+ self.id_buckets = self.make_buckets(bucket_width=2.0)
75
+
76
+ def _get_sample_lengths(self):
77
+ id_with_lengths = []
78
+ for i in range(len(self.dataset)):
79
+ id_with_lengths.append((i, self.dataset.get_sample_length(i)))
80
+ id_with_lengths.sort(key=lambda x: x[1])
81
+ return id_with_lengths
82
+
83
+ def make_buckets(self, bucket_width: float = 2.0):
84
+ buckets = []
85
+ cur = []
86
+ max_sec = bucket_width
87
+ for id, sec in self.id_with_length:
88
+ if sec < max_sec:
89
+ cur.append(id)
90
+ else:
91
+ buckets.append(cur)
92
+ cur = [id]
93
+ max_sec += bucket_width
94
+ if len(cur) > 0:
95
+ buckets.append(cur)
96
+ return buckets
97
+
98
+ def __iter__(self) -> Iterator[T_co]:
99
+ if self.shuffle:
100
+ # deterministically shuffle based on epoch and seed
101
+ g = torch.Generator()
102
+ g.manual_seed(self.seed + self.epoch)
103
+ random.seed(self.epoch + self.seed)
104
+ shuffled_bucket = []
105
+ for buc in self.id_buckets:
106
+ buc_copy = buc.copy()
107
+ shuffle(buc_copy)
108
+ shuffled_bucket.append(buc_copy)
109
+ grouped_batch_size = self.batch_size * self.num_replicas
110
+ shuffled_bucket = list(itertools.chain(*shuffled_bucket))
111
+ n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size))
112
+ batches = [shuffled_bucket[b * grouped_batch_size : (b + 1) * grouped_batch_size] for b in range(n_batch)]
113
+ shuffle(batches)
114
+ indices = list(itertools.chain(*batches))
115
+ else:
116
+ # type: ignore[arg-type]
117
+ indices = list(range(len(self.dataset)))
118
+
119
+ if not self.drop_last:
120
+ # add extra samples to make it evenly divisible
121
+ padding_size = self.total_size - len(indices)
122
+ if padding_size <= len(indices):
123
+ indices += indices[:padding_size]
124
+ else:
125
+ indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
126
+ else:
127
+ # remove tail of data to make it evenly divisible.
128
+ indices = indices[: self.total_size]
129
+ assert len(indices) == self.total_size
130
+
131
+ # subsample
132
+ indices = indices[self.rank : self.total_size : self.num_replicas]
133
+ assert len(indices) == self.num_samples
134
+
135
+ return iter(indices)
136
+
137
+ def __len__(self) -> int:
138
+ return self.num_samples
139
+
140
+ def set_epoch(self, epoch: int) -> None:
141
+ r"""
142
+ Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
143
+ use a different random ordering for each epoch. Otherwise, the next iteration of this
144
+ sampler will yield the same ordering.
145
+
146
+ Args:
147
+ epoch (int): Epoch number.
148
+ """
149
+ self.epoch = epoch
GPT_SoVITS/AR/data/data_module.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/data_module.py
2
+ # reference: https://github.com/lifeiteng/vall-e
3
+ from pytorch_lightning import LightningDataModule
4
+ from torch.utils.data import DataLoader
5
+
6
+ from AR.data.bucket_sampler import DistributedBucketSampler
7
+ from AR.data.dataset import Text2SemanticDataset
8
+
9
+
10
+ class Text2SemanticDataModule(LightningDataModule):
11
+ def __init__(
12
+ self,
13
+ config,
14
+ train_semantic_path,
15
+ train_phoneme_path,
16
+ dev_semantic_path=None,
17
+ dev_phoneme_path=None,
18
+ ):
19
+ super().__init__()
20
+ self.config = config
21
+ self.train_semantic_path = train_semantic_path
22
+ self.train_phoneme_path = train_phoneme_path
23
+ self.dev_semantic_path = dev_semantic_path
24
+ self.dev_phoneme_path = dev_phoneme_path
25
+ self.num_workers = self.config["data"]["num_workers"]
26
+
27
+ def prepare_data(self):
28
+ pass
29
+
30
+ def setup(self, stage=None, output_logs=False):
31
+ self._train_dataset = Text2SemanticDataset(
32
+ phoneme_path=self.train_phoneme_path,
33
+ semantic_path=self.train_semantic_path,
34
+ max_sec=self.config["data"]["max_sec"],
35
+ pad_val=self.config["data"]["pad_val"],
36
+ )
37
+ self._dev_dataset = self._train_dataset
38
+ # self._dev_dataset = Text2SemanticDataset(
39
+ # phoneme_path=self.dev_phoneme_path,
40
+ # semantic_path=self.dev_semantic_path,
41
+ # max_sample=self.config['data']['max_eval_sample'],
42
+ # max_sec=self.config['data']['max_sec'],
43
+ # pad_val=self.config['data']['pad_val'])
44
+
45
+ def train_dataloader(self):
46
+ batch_size = (
47
+ self.config["train"]["batch_size"] // 2
48
+ if self.config["train"].get("if_dpo", False) is True
49
+ else self.config["train"]["batch_size"]
50
+ )
51
+ batch_size = max(min(batch_size, len(self._train_dataset) // 4), 1) # 防止不保存
52
+ sampler = DistributedBucketSampler(self._train_dataset, batch_size=batch_size)
53
+ return DataLoader(
54
+ self._train_dataset,
55
+ batch_size=batch_size,
56
+ sampler=sampler,
57
+ collate_fn=self._train_dataset.collate,
58
+ num_workers=self.num_workers,
59
+ persistent_workers=True,
60
+ prefetch_factor=16,
61
+ )
62
+
63
+ def val_dataloader(self):
64
+ return DataLoader(
65
+ self._dev_dataset,
66
+ batch_size=1,
67
+ shuffle=False,
68
+ collate_fn=self._train_dataset.collate,
69
+ num_workers=max(self.num_workers, 12),
70
+ persistent_workers=True,
71
+ prefetch_factor=16,
72
+ )
73
+
74
+ # 这个会使用到嘛?
75
+ def test_dataloader(self):
76
+ return DataLoader(
77
+ self._dev_dataset,
78
+ batch_size=1,
79
+ shuffle=False,
80
+ collate_fn=self._train_dataset.collate,
81
+ )
GPT_SoVITS/AR/data/dataset.py ADDED
@@ -0,0 +1,320 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/dataset.py
2
+ # reference: https://github.com/lifeiteng/vall-e
3
+
4
+ # sys.path.append("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert")
5
+ import os
6
+ import traceback
7
+ from typing import Dict, List
8
+
9
+ import numpy as np
10
+ import pandas as pd
11
+ import torch
12
+ from torch.utils.data import DataLoader, Dataset
13
+
14
+ version = os.environ.get("version", None)
15
+
16
+ from text import cleaned_text_to_sequence
17
+
18
+ # from config import exp_dir
19
+
20
+
21
+ def batch_sequences(sequences: List[np.array], axis: int = 0, pad_value: int = 0):
22
+ seq = sequences[0]
23
+ ndim = seq.ndim
24
+ if axis < 0:
25
+ axis += ndim
26
+ dtype = seq.dtype
27
+ pad_value = dtype.type(pad_value)
28
+ seq_lengths = [seq.shape[axis] for seq in sequences]
29
+ max_length = np.max(seq_lengths)
30
+
31
+ padded_sequences = []
32
+ for seq, length in zip(sequences, seq_lengths):
33
+ padding = [(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (ndim - axis - 1)
34
+ padded_seq = np.pad(seq, padding, mode="constant", constant_values=pad_value)
35
+ padded_sequences.append(padded_seq)
36
+ batch = np.stack(padded_sequences)
37
+ return batch
38
+
39
+
40
+ class Text2SemanticDataset(Dataset):
41
+ """dataset class for text tokens to semantic model training."""
42
+
43
+ def __init__(
44
+ self,
45
+ phoneme_path: str,
46
+ semantic_path: str,
47
+ max_sample: int = None,
48
+ max_sec: int = 100,
49
+ pad_val: int = 1024,
50
+ # min value of phoneme/sec
51
+ min_ps_ratio: int = 3,
52
+ # max value of phoneme/sec
53
+ max_ps_ratio: int = 25,
54
+ ) -> None:
55
+ super().__init__()
56
+
57
+ self.semantic_data = pd.read_csv(
58
+ semantic_path,
59
+ delimiter="\t",
60
+ encoding="utf-8",
61
+ )
62
+ # get dict
63
+ self.path2 = phoneme_path # "%s/2-name2text.txt"%exp_dir#phoneme_path
64
+ self.path3 = "%s/3-bert" % (
65
+ os.path.dirname(
66
+ phoneme_path,
67
+ )
68
+ ) # "%s/3-bert"%exp_dir#bert_dir
69
+ self.path6 = semantic_path # "%s/6-name2semantic.tsv"%exp_dir#semantic_path
70
+ assert os.path.exists(self.path2)
71
+ assert os.path.exists(self.path6)
72
+ self.phoneme_data = {}
73
+ with open(self.path2, "r", encoding="utf8") as f:
74
+ lines = f.read().strip("\n").split("\n")
75
+
76
+ for line in lines:
77
+ tmp = line.split("\t")
78
+ if len(tmp) != 4:
79
+ continue
80
+ self.phoneme_data[tmp[0]] = [tmp[1], tmp[2], tmp[3]]
81
+
82
+ # self.phoneme_data = np.load(phoneme_path, allow_pickle=True).item()
83
+ # pad for semantic tokens
84
+ self.PAD: int = pad_val
85
+ # self.hz = 25
86
+ # with open("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert/configs/s2.json", "r") as f:data = f.read()
87
+ # data=json.loads(data)["model"]["semantic_frame_rate"]#50hz
88
+ # self.hz=int(data[:-2])#
89
+ self.hz = int(os.environ.get("hz", "25hz")[:-2])
90
+
91
+ # max seconds of semantic token
92
+ self.max_sec = max_sec
93
+ self.min_ps_ratio = min_ps_ratio
94
+ self.max_ps_ratio = max_ps_ratio
95
+
96
+ if max_sample is not None:
97
+ self.semantic_data = self.semantic_data[:max_sample]
98
+
99
+ # {idx: (semantic, phoneme)}
100
+ # semantic list, phoneme list
101
+ self.semantic_phoneme = []
102
+ self.item_names = []
103
+
104
+ self.inited = False
105
+
106
+ if not self.inited:
107
+ # 调用初始化函数
108
+ self.init_batch()
109
+ self.inited = True
110
+ del self.semantic_data
111
+ del self.phoneme_data
112
+ # self.tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
113
+ # self.tokenizer = AutoTokenizer.from_pretrained("/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large")
114
+
115
+ def init_batch(self):
116
+ semantic_data_len = len(self.semantic_data)
117
+ phoneme_data_len = len(self.phoneme_data.keys())
118
+ print("semantic_data_len:", semantic_data_len)
119
+ print("phoneme_data_len:", phoneme_data_len)
120
+ print(self.semantic_data)
121
+ idx = 0
122
+ num_not_in = 0
123
+ num_deleted_bigger = 0
124
+ num_deleted_ps = 0
125
+ for i in range(semantic_data_len):
126
+ # 先依次遍历
127
+ # get str
128
+ item_name = self.semantic_data.iloc[i, 0]
129
+ # print(self.phoneme_data)
130
+ try:
131
+ phoneme, word2ph, text = self.phoneme_data[item_name]
132
+ except Exception:
133
+ traceback.print_exc()
134
+ # print(f"{item_name} not in self.phoneme_data !")
135
+ num_not_in += 1
136
+ continue
137
+
138
+ semantic_str = self.semantic_data.iloc[i, 1]
139
+ # get token list
140
+ semantic_ids = [int(idx) for idx in semantic_str.split(" ")]
141
+ # (T), 是否需要变成 (1, T) -> 不需要,因为需要求 len
142
+ # 过滤掉太长的样��
143
+ if (
144
+ len(semantic_ids) > self.max_sec * self.hz
145
+ ): #########1###根据token个数推测总时长过滤时长60s(config里)#40*25=1k
146
+ num_deleted_bigger += 1
147
+ continue
148
+ # (T, ), 这个速度不会很慢,所以可以在一开始就处理,无需在 __getitem__ 里面单个处理####
149
+ phoneme = phoneme.split(" ")
150
+
151
+ try:
152
+ phoneme_ids = cleaned_text_to_sequence(phoneme, version)
153
+ except:
154
+ traceback.print_exc()
155
+ # print(f"{item_name} not in self.phoneme_data !")
156
+ num_not_in += 1
157
+ continue
158
+ # if len(phoneme_ids) >400:###########2:改为恒定限制为semantic/2.5就行
159
+ if len(phoneme_ids) > self.max_sec * self.hz / 2.5: ###########2:改为恒定限制为semantic/2.5就行
160
+ num_deleted_ps += 1
161
+ continue
162
+ # if len(semantic_ids) > 1000:###########3
163
+ # num_deleted_bigger += 1
164
+ # continue
165
+
166
+ ps_ratio = len(phoneme_ids) / (len(semantic_ids) / self.hz)
167
+
168
+ if ps_ratio > self.max_ps_ratio or ps_ratio < self.min_ps_ratio: ##########4#3~25#每秒多少个phone
169
+ num_deleted_ps += 1
170
+ # print(item_name)
171
+ continue
172
+
173
+ self.semantic_phoneme.append((semantic_ids, phoneme_ids))
174
+ idx += 1
175
+ self.item_names.append(item_name)
176
+
177
+ min_num = 100 # 20直接不补#30补了也不存ckpt
178
+ leng = len(self.semantic_phoneme)
179
+ if leng < min_num:
180
+ tmp1 = self.semantic_phoneme
181
+ tmp2 = self.item_names
182
+ self.semantic_phoneme = []
183
+ self.item_names = []
184
+ for _ in range(max(2, int(min_num / leng))):
185
+ self.semantic_phoneme += tmp1
186
+ self.item_names += tmp2
187
+ if num_not_in > 0:
188
+ print(f"there are {num_not_in} semantic datas not in phoneme datas")
189
+ if num_deleted_bigger > 0:
190
+ print(
191
+ f"deleted {num_deleted_bigger} audios who's duration are bigger than {self.max_sec} seconds",
192
+ )
193
+ if num_deleted_ps > 0:
194
+ # 4702 for LibriTTS, LirbriTTS 是标注数据, 是否需要筛?=> 需要,有值为 100 的极端值
195
+ print(
196
+ f"deleted {num_deleted_ps} audios who's phoneme/sec are bigger than {self.max_ps_ratio} or smaller than {self.min_ps_ratio}",
197
+ )
198
+ """
199
+ there are 31 semantic datas not in phoneme datas
200
+ deleted 34 audios who's duration are bigger than 54 seconds
201
+ deleted 3190 audios who's phoneme/sec are bigger than 25 or smaller than 3
202
+ dataset.__len__(): 366463
203
+
204
+ """
205
+ # 345410 for LibriTTS
206
+ print("dataset.__len__():", self.__len__())
207
+
208
+ def __get_item_names__(self) -> List[str]:
209
+ return self.item_names
210
+
211
+ def __len__(self) -> int:
212
+ return len(self.semantic_phoneme)
213
+
214
+ def __getitem__(self, idx: int) -> Dict:
215
+ semantic_ids, phoneme_ids = self.semantic_phoneme[idx]
216
+ item_name = self.item_names[idx]
217
+ phoneme_ids_len = len(phoneme_ids)
218
+ # semantic tokens target
219
+ semantic_ids_len = len(semantic_ids)
220
+
221
+ flag = 0
222
+ path_bert = "%s/%s.pt" % (self.path3, item_name)
223
+ if os.path.exists(path_bert) == True:
224
+ bert_feature = torch.load(path_bert, map_location="cpu")
225
+ else:
226
+ flag = 1
227
+ if flag == 1:
228
+ # bert_feature=torch.zeros_like(phoneme_ids,dtype=torch.float32)
229
+ bert_feature = None
230
+ else:
231
+ assert bert_feature.shape[-1] == len(phoneme_ids)
232
+ return {
233
+ "idx": idx,
234
+ "phoneme_ids": phoneme_ids,
235
+ "phoneme_ids_len": phoneme_ids_len,
236
+ "semantic_ids": semantic_ids,
237
+ "semantic_ids_len": semantic_ids_len,
238
+ "bert_feature": bert_feature,
239
+ }
240
+
241
+ def get_sample_length(self, idx: int):
242
+ semantic_ids = self.semantic_phoneme[idx][0]
243
+ sec = 1.0 * len(semantic_ids) / self.hz
244
+ return sec
245
+
246
+ def collate(self, examples: List[Dict]) -> Dict:
247
+ sample_index: List[int] = []
248
+ phoneme_ids: List[torch.Tensor] = []
249
+ phoneme_ids_lens: List[int] = []
250
+ semantic_ids: List[torch.Tensor] = []
251
+ semantic_ids_lens: List[int] = []
252
+ # return
253
+
254
+ for item in examples:
255
+ sample_index.append(item["idx"])
256
+ phoneme_ids.append(np.array(item["phoneme_ids"], dtype=np.int64))
257
+ semantic_ids.append(np.array(item["semantic_ids"], dtype=np.int64))
258
+ phoneme_ids_lens.append(item["phoneme_ids_len"])
259
+ semantic_ids_lens.append(item["semantic_ids_len"])
260
+
261
+ # pad 0
262
+ phoneme_ids = batch_sequences(phoneme_ids)
263
+ semantic_ids = batch_sequences(semantic_ids, pad_value=self.PAD)
264
+
265
+ # # convert each batch to torch.tensor
266
+ phoneme_ids = torch.tensor(phoneme_ids)
267
+ semantic_ids = torch.tensor(semantic_ids)
268
+ phoneme_ids_lens = torch.tensor(phoneme_ids_lens)
269
+ semantic_ids_lens = torch.tensor(semantic_ids_lens)
270
+ bert_padded = torch.FloatTensor(len(examples), 1024, max(phoneme_ids_lens))
271
+ bert_padded.zero_()
272
+
273
+ for idx, item in enumerate(examples):
274
+ bert = item["bert_feature"]
275
+ if bert != None:
276
+ bert_padded[idx, :, : bert.shape[-1]] = bert
277
+
278
+ return {
279
+ # List[int]
280
+ "ids": sample_index,
281
+ # torch.Tensor (B, max_phoneme_length)
282
+ "phoneme_ids": phoneme_ids,
283
+ # torch.Tensor (B)
284
+ "phoneme_ids_len": phoneme_ids_lens,
285
+ # torch.Tensor (B, max_semantic_ids_length)
286
+ "semantic_ids": semantic_ids,
287
+ # torch.Tensor (B)
288
+ "semantic_ids_len": semantic_ids_lens,
289
+ # torch.Tensor (B, 1024, max_phoneme_length)
290
+ "bert_feature": bert_padded,
291
+ }
292
+
293
+
294
+ if __name__ == "__main__":
295
+ root_dir = "/data/docker/liujing04/gpt-vits/prepare/dump_mix/"
296
+ dataset = Text2SemanticDataset(
297
+ phoneme_path=root_dir + "phoneme_train.npy",
298
+ semantic_path=root_dir + "semantic_train.tsv",
299
+ )
300
+
301
+ batch_size = 12
302
+ dataloader = DataLoader(
303
+ dataset,
304
+ batch_size=batch_size,
305
+ collate_fn=dataset.collate,
306
+ shuffle=False,
307
+ )
308
+ for i, batch in enumerate(dataloader):
309
+ if i % 1000 == 0:
310
+ print(i)
311
+ # if i == 0:
312
+ # print('batch["ids"]:', batch["ids"])
313
+ # print('batch["phoneme_ids"]:', batch["phoneme_ids"],
314
+ # batch["phoneme_ids"].shape)
315
+ # print('batch["phoneme_ids_len"]:', batch["phoneme_ids_len"],
316
+ # batch["phoneme_ids_len"].shape)
317
+ # print('batch["semantic_ids"]:', batch["semantic_ids"],
318
+ # batch["semantic_ids"].shape)
319
+ # print('batch["semantic_ids_len"]:', batch["semantic_ids_len"],
320
+ # batch["semantic_ids_len"].shape)
GPT_SoVITS/AR/models/__init__.py ADDED
File without changes
GPT_SoVITS/AR/models/t2s_lightning_module.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py
2
+ # reference: https://github.com/lifeiteng/vall-e
3
+ import os
4
+ import sys
5
+
6
+ now_dir = os.getcwd()
7
+ sys.path.append(now_dir)
8
+ from typing import Dict
9
+
10
+ import torch
11
+ from pytorch_lightning import LightningModule
12
+
13
+ from AR.models.t2s_model import Text2SemanticDecoder
14
+ from AR.modules.lr_schedulers import WarmupCosineLRSchedule
15
+ from AR.modules.optim import ScaledAdam
16
+
17
+
18
+ class Text2SemanticLightningModule(LightningModule):
19
+ def __init__(self, config, output_dir, is_train=True):
20
+ super().__init__()
21
+ self.config = config
22
+ self.top_k = 3
23
+ self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
24
+ pretrained_s1 = config.get("pretrained_s1")
25
+ if pretrained_s1 and is_train:
26
+ # print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
27
+ print(
28
+ self.load_state_dict(
29
+ torch.load(
30
+ pretrained_s1,
31
+ map_location="cpu", weights_only=False,
32
+ )["weight"],
33
+ )
34
+ )
35
+ if is_train:
36
+ self.automatic_optimization = False
37
+ self.save_hyperparameters()
38
+ self.eval_dir = output_dir / "eval"
39
+ self.eval_dir.mkdir(parents=True, exist_ok=True)
40
+
41
+ def training_step(self, batch: Dict, batch_idx: int):
42
+ opt = self.optimizers()
43
+ scheduler = self.lr_schedulers()
44
+ forward = self.model.forward if self.config["train"].get("if_dpo", False) == True else self.model.forward_old
45
+ loss, acc = forward(
46
+ batch["phoneme_ids"],
47
+ batch["phoneme_ids_len"],
48
+ batch["semantic_ids"],
49
+ batch["semantic_ids_len"],
50
+ batch["bert_feature"],
51
+ )
52
+ self.manual_backward(loss)
53
+ if batch_idx > 0 and batch_idx % 4 == 0:
54
+ opt.step()
55
+ opt.zero_grad()
56
+ scheduler.step()
57
+
58
+ self.log(
59
+ "total_loss",
60
+ loss,
61
+ on_step=True,
62
+ on_epoch=True,
63
+ prog_bar=True,
64
+ sync_dist=True,
65
+ )
66
+ self.log(
67
+ "lr",
68
+ scheduler.get_last_lr()[0],
69
+ on_epoch=True,
70
+ prog_bar=True,
71
+ sync_dist=True,
72
+ )
73
+ self.log(
74
+ f"top_{self.top_k}_acc",
75
+ acc,
76
+ on_step=True,
77
+ on_epoch=True,
78
+ prog_bar=True,
79
+ sync_dist=True,
80
+ )
81
+
82
+ def validation_step(self, batch: Dict, batch_idx: int):
83
+ return
84
+
85
+ # # get loss
86
+ # loss, acc = self.model.forward(
87
+ # batch['phoneme_ids'], batch['phoneme_ids_len'],
88
+ # batch['semantic_ids'], batch['semantic_ids_len'],
89
+ # batch['bert_feature']
90
+ # )
91
+ #
92
+ # self.log(
93
+ # "val_total_loss",
94
+ # loss,
95
+ # on_step=True,
96
+ # on_epoch=True,
97
+ # prog_bar=True,
98
+ # sync_dist=True)
99
+ # self.log(
100
+ # f"val_top_{self.top_k}_acc",
101
+ # acc,
102
+ # on_step=True,
103
+ # on_epoch=True,
104
+ # prog_bar=True,
105
+ # sync_dist=True)
106
+ #
107
+ # # get infer output
108
+ # semantic_len = batch['semantic_ids'].size(1)
109
+ # prompt_len = min(int(semantic_len * 0.5), 150)
110
+ # prompt = batch['semantic_ids'][:, :prompt_len]
111
+ # pred_semantic = self.model.infer(batch['phoneme_ids'],
112
+ # batch['phoneme_ids_len'], prompt,
113
+ # batch['bert_feature']
114
+ # )
115
+ # save_name = f'semantic_toks_{batch_idx}.pt'
116
+ # save_path = os.path.join(self.eval_dir, save_name)
117
+ # torch.save(pred_semantic.detach().cpu(), save_path)
118
+
119
+ def configure_optimizers(self):
120
+ model_parameters = self.model.parameters()
121
+ parameters_names = []
122
+ parameters_names.append([name_param_pair[0] for name_param_pair in self.model.named_parameters()])
123
+ lm_opt = ScaledAdam(
124
+ model_parameters,
125
+ lr=0.01,
126
+ betas=(0.9, 0.95),
127
+ clipping_scale=2.0,
128
+ parameters_names=parameters_names,
129
+ show_dominant_parameters=False,
130
+ clipping_update_period=1000,
131
+ )
132
+
133
+ return {
134
+ "optimizer": lm_opt,
135
+ "lr_scheduler": {
136
+ "scheduler": WarmupCosineLRSchedule(
137
+ lm_opt,
138
+ init_lr=self.config["optimizer"]["lr_init"],
139
+ peak_lr=self.config["optimizer"]["lr"],
140
+ end_lr=self.config["optimizer"]["lr_end"],
141
+ warmup_steps=self.config["optimizer"]["warmup_steps"],
142
+ total_steps=self.config["optimizer"]["decay_steps"],
143
+ )
144
+ },
145
+ }
GPT_SoVITS/AR/models/t2s_lightning_module_onnx.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py
2
+ # reference: https://github.com/lifeiteng/vall-e
3
+ import os
4
+ import sys
5
+
6
+ now_dir = os.getcwd()
7
+ sys.path.append(now_dir)
8
+ from typing import Dict
9
+
10
+ import torch
11
+ from pytorch_lightning import LightningModule
12
+
13
+ from AR.models.t2s_model_onnx import Text2SemanticDecoder
14
+ from AR.modules.lr_schedulers import WarmupCosineLRSchedule
15
+ from AR.modules.optim import ScaledAdam
16
+
17
+
18
+ class Text2SemanticLightningModule(LightningModule):
19
+ def __init__(self, config, output_dir, is_train=True):
20
+ super().__init__()
21
+ self.config = config
22
+ self.top_k = 3
23
+ self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
24
+ pretrained_s1 = config.get("pretrained_s1")
25
+ if pretrained_s1 and is_train:
26
+ # print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
27
+ print(
28
+ self.load_state_dict(
29
+ torch.load(
30
+ pretrained_s1,
31
+ map_location="cpu",
32
+ )["weight"],
33
+ ),
34
+ )
35
+ if is_train:
36
+ self.automatic_optimization = False
37
+ self.save_hyperparameters()
38
+ self.eval_dir = output_dir / "eval"
39
+ self.eval_dir.mkdir(parents=True, exist_ok=True)
40
+
41
+ def training_step(self, batch: Dict, batch_idx: int):
42
+ opt = self.optimizers()
43
+ scheduler = self.lr_schedulers()
44
+ loss, acc = self.model.forward(
45
+ batch["phoneme_ids"],
46
+ batch["phoneme_ids_len"],
47
+ batch["semantic_ids"],
48
+ batch["semantic_ids_len"],
49
+ batch["bert_feature"],
50
+ )
51
+ self.manual_backward(loss)
52
+ if batch_idx > 0 and batch_idx % 4 == 0:
53
+ opt.step()
54
+ opt.zero_grad()
55
+ scheduler.step()
56
+
57
+ self.log(
58
+ "total_loss",
59
+ loss,
60
+ on_step=True,
61
+ on_epoch=True,
62
+ prog_bar=True,
63
+ sync_dist=True,
64
+ )
65
+ self.log(
66
+ "lr",
67
+ scheduler.get_last_lr()[0],
68
+ on_epoch=True,
69
+ prog_bar=True,
70
+ sync_dist=True,
71
+ )
72
+ self.log(
73
+ f"top_{self.top_k}_acc",
74
+ acc,
75
+ on_step=True,
76
+ on_epoch=True,
77
+ prog_bar=True,
78
+ sync_dist=True,
79
+ )
80
+
81
+ def validation_step(self, batch: Dict, batch_idx: int):
82
+ return
83
+
84
+ def configure_optimizers(self):
85
+ model_parameters = self.model.parameters()
86
+ parameters_names = []
87
+ parameters_names.append([name_param_pair[0] for name_param_pair in self.model.named_parameters()])
88
+ lm_opt = ScaledAdam(
89
+ model_parameters,
90
+ lr=0.01,
91
+ betas=(0.9, 0.95),
92
+ clipping_scale=2.0,
93
+ parameters_names=parameters_names,
94
+ show_dominant_parameters=False,
95
+ clipping_update_period=1000,
96
+ )
97
+
98
+ return {
99
+ "optimizer": lm_opt,
100
+ "lr_scheduler": {
101
+ "scheduler": WarmupCosineLRSchedule(
102
+ lm_opt,
103
+ init_lr=self.config["optimizer"]["lr_init"],
104
+ peak_lr=self.config["optimizer"]["lr"],
105
+ end_lr=self.config["optimizer"]["lr_end"],
106
+ warmup_steps=self.config["optimizer"]["warmup_steps"],
107
+ total_steps=self.config["optimizer"]["decay_steps"],
108
+ )
109
+ },
110
+ }
GPT_SoVITS/AR/models/t2s_model.py ADDED
@@ -0,0 +1,935 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
2
+ # reference: https://github.com/lifeiteng/vall-e
3
+ import math
4
+ from typing import List, Optional
5
+
6
+ import torch
7
+ from torch import nn
8
+ from torch.nn import functional as F
9
+ from torchmetrics.classification import MulticlassAccuracy
10
+ from tqdm import tqdm
11
+
12
+ from AR.models.utils import (
13
+ dpo_loss,
14
+ get_batch_logps,
15
+ make_pad_mask,
16
+ make_pad_mask_left,
17
+ make_reject_y,
18
+ sample,
19
+ topk_sampling,
20
+ )
21
+ from AR.modules.embedding import SinePositionalEmbedding, TokenEmbedding
22
+ from AR.modules.transformer import LayerNorm, TransformerEncoder, TransformerEncoderLayer
23
+
24
+ default_config = {
25
+ "embedding_dim": 512,
26
+ "hidden_dim": 512,
27
+ "num_head": 8,
28
+ "num_layers": 12,
29
+ "num_codebook": 8,
30
+ "p_dropout": 0.0,
31
+ "vocab_size": 1024 + 1,
32
+ "phoneme_vocab_size": 512,
33
+ "EOS": 1024,
34
+ }
35
+
36
+
37
+ # @torch.jit.script ## 使用的话首次推理会非常慢,而且推理速度不稳定
38
+ # Efficient implementation equivalent to the following:
39
+ def scaled_dot_product_attention(
40
+ query: torch.Tensor,
41
+ key: torch.Tensor,
42
+ value: torch.Tensor,
43
+ attn_mask: Optional[torch.Tensor] = None,
44
+ scale: Optional[torch.Tensor] = None,
45
+ ) -> torch.Tensor:
46
+ B, H, L, S = query.size(0), query.size(1), query.size(-2), key.size(-2)
47
+ if scale is None:
48
+ scale_factor = torch.tensor(1 / math.sqrt(query.size(-1)))
49
+ else:
50
+ scale_factor = scale
51
+ attn_bias = torch.zeros(B, H, L, S, dtype=query.dtype, device=query.device)
52
+
53
+ if attn_mask is not None:
54
+ if attn_mask.dtype == torch.bool:
55
+ attn_bias.masked_fill_(attn_mask, float("-inf"))
56
+ else:
57
+ attn_bias += attn_mask
58
+ attn_weight = query @ key.transpose(-2, -1) * scale_factor
59
+ attn_weight += attn_bias
60
+ attn_weight = torch.softmax(attn_weight, dim=-1)
61
+
62
+ if attn_mask is not None:
63
+ if attn_mask.dtype == torch.bool:
64
+ attn_weight.masked_fill_(attn_mask, 0)
65
+ else:
66
+ attn_mask[attn_mask != float("-inf")] = 0
67
+ attn_mask[attn_mask == float("-inf")] = 1
68
+ attn_weight.masked_fill_(attn_mask, 0)
69
+
70
+ return attn_weight @ value
71
+
72
+
73
+ @torch.jit.script
74
+ class T2SMLP:
75
+ def __init__(self, w1, b1, w2, b2):
76
+ self.w1 = w1
77
+ self.b1 = b1
78
+ self.w2 = w2
79
+ self.b2 = b2
80
+
81
+ def forward(self, x):
82
+ x = F.relu(F.linear(x, self.w1, self.b1))
83
+ x = F.linear(x, self.w2, self.b2)
84
+ return x
85
+
86
+
87
+ @torch.jit.script
88
+ class T2SBlock:
89
+ def __init__(
90
+ self,
91
+ num_heads,
92
+ hidden_dim: int,
93
+ mlp: T2SMLP,
94
+ qkv_w,
95
+ qkv_b,
96
+ out_w,
97
+ out_b,
98
+ norm_w1,
99
+ norm_b1,
100
+ norm_eps1,
101
+ norm_w2,
102
+ norm_b2,
103
+ norm_eps2,
104
+ ):
105
+ self.num_heads = num_heads
106
+ self.mlp = mlp
107
+ self.hidden_dim: int = hidden_dim
108
+ self.qkv_w = qkv_w
109
+ self.qkv_b = qkv_b
110
+ self.out_w = out_w
111
+ self.out_b = out_b
112
+ self.norm_w1 = norm_w1
113
+ self.norm_b1 = norm_b1
114
+ self.norm_eps1 = norm_eps1
115
+ self.norm_w2 = norm_w2
116
+ self.norm_b2 = norm_b2
117
+ self.norm_eps2 = norm_eps2
118
+
119
+ self.false = torch.tensor(False, dtype=torch.bool)
120
+
121
+ @torch.jit.ignore
122
+ def to_mask(
123
+ self,
124
+ x: torch.Tensor,
125
+ padding_mask: Optional[torch.Tensor],
126
+ ):
127
+ if padding_mask is None:
128
+ return x
129
+
130
+ if padding_mask.dtype == torch.bool:
131
+ return x.masked_fill(padding_mask, 0)
132
+ else:
133
+ return x * padding_mask
134
+
135
+ def process_prompt(
136
+ self,
137
+ x: torch.Tensor,
138
+ attn_mask: torch.Tensor,
139
+ padding_mask: Optional[torch.Tensor] = None,
140
+ torch_sdpa: bool = True,
141
+ ):
142
+ q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1)
143
+
144
+ batch_size = q.shape[0]
145
+ q_len = q.shape[1]
146
+ kv_len = k.shape[1]
147
+
148
+ q = self.to_mask(q, padding_mask)
149
+ k_cache = self.to_mask(k, padding_mask)
150
+ v_cache = self.to_mask(v, padding_mask)
151
+
152
+ q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
153
+ k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
154
+ v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
155
+
156
+ if torch_sdpa:
157
+ attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask)
158
+ else:
159
+ attn = scaled_dot_product_attention(q, k, v, attn_mask)
160
+
161
+ attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1)
162
+ attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b)
163
+
164
+ x = x + attn
165
+ x = F.layer_norm(x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1)
166
+ x = x + self.mlp.forward(x)
167
+ x = F.layer_norm(
168
+ x,
169
+ [self.hidden_dim],
170
+ self.norm_w2,
171
+ self.norm_b2,
172
+ self.norm_eps2,
173
+ )
174
+ return x, k_cache, v_cache
175
+
176
+ def decode_next_token(
177
+ self,
178
+ x: torch.Tensor,
179
+ k_cache: torch.Tensor,
180
+ v_cache: torch.Tensor,
181
+ attn_mask: torch.Tensor = None,
182
+ torch_sdpa: bool = True,
183
+ ):
184
+ q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
185
+
186
+ k_cache = torch.cat([k_cache, k], dim=1)
187
+ v_cache = torch.cat([v_cache, v], dim=1)
188
+
189
+ batch_size = q.shape[0]
190
+ q_len = q.shape[1]
191
+ kv_len = k_cache.shape[1]
192
+
193
+ q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
194
+ k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
195
+ v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
196
+
197
+ if torch_sdpa:
198
+ attn = F.scaled_dot_product_attention(q, k, v, (~attn_mask) if attn_mask is not None else None)
199
+ else:
200
+ attn = scaled_dot_product_attention(q, k, v, attn_mask)
201
+
202
+ attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1)
203
+ attn = F.linear(attn, self.out_w, self.out_b)
204
+
205
+ x = x + attn
206
+ x = F.layer_norm(
207
+ x,
208
+ [self.hidden_dim],
209
+ self.norm_w1,
210
+ self.norm_b1,
211
+ self.norm_eps1,
212
+ )
213
+ x = x + self.mlp.forward(x)
214
+ x = F.layer_norm(
215
+ x,
216
+ [self.hidden_dim],
217
+ self.norm_w2,
218
+ self.norm_b2,
219
+ self.norm_eps2,
220
+ )
221
+ return x, k_cache, v_cache
222
+
223
+
224
+ @torch.jit.script
225
+ class T2STransformer:
226
+ def __init__(self, num_blocks: int, blocks: List[T2SBlock]):
227
+ self.num_blocks: int = num_blocks
228
+ self.blocks = blocks
229
+
230
+ def process_prompt(
231
+ self,
232
+ x: torch.Tensor,
233
+ attn_mask: torch.Tensor,
234
+ padding_mask: Optional[torch.Tensor] = None,
235
+ torch_sdpa: bool = True,
236
+ ):
237
+ k_cache: List[torch.Tensor] = []
238
+ v_cache: List[torch.Tensor] = []
239
+ for i in range(self.num_blocks):
240
+ x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask, torch_sdpa)
241
+ k_cache.append(k_cache_)
242
+ v_cache.append(v_cache_)
243
+ return x, k_cache, v_cache
244
+
245
+ def decode_next_token(
246
+ self,
247
+ x: torch.Tensor,
248
+ k_cache: List[torch.Tensor],
249
+ v_cache: List[torch.Tensor],
250
+ attn_mask: torch.Tensor = None,
251
+ torch_sdpa: bool = True,
252
+ ):
253
+ for i in range(self.num_blocks):
254
+ x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(
255
+ x, k_cache[i], v_cache[i], attn_mask, torch_sdpa
256
+ )
257
+ return x, k_cache, v_cache
258
+
259
+
260
+ class Text2SemanticDecoder(nn.Module):
261
+ def __init__(self, config, norm_first=False, top_k=3):
262
+ super(Text2SemanticDecoder, self).__init__()
263
+ self.model_dim = config["model"]["hidden_dim"]
264
+ self.embedding_dim = config["model"]["embedding_dim"]
265
+ self.num_head = config["model"]["head"]
266
+ self.num_layers = config["model"]["n_layer"]
267
+ self.norm_first = norm_first
268
+ self.vocab_size = config["model"]["vocab_size"]
269
+ self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
270
+ self.p_dropout = config["model"]["dropout"]
271
+ self.EOS = config["model"]["EOS"]
272
+ self.norm_first = norm_first
273
+ assert self.EOS == self.vocab_size - 1
274
+ # should be same as num of kmeans bin
275
+ # assert self.EOS == 1024
276
+ self.bert_proj = nn.Linear(1024, self.embedding_dim)
277
+ self.ar_text_embedding = TokenEmbedding(
278
+ self.embedding_dim,
279
+ self.phoneme_vocab_size,
280
+ self.p_dropout,
281
+ )
282
+ self.ar_text_position = SinePositionalEmbedding(
283
+ self.embedding_dim,
284
+ dropout=0.1,
285
+ scale=False,
286
+ alpha=True,
287
+ )
288
+ self.ar_audio_embedding = TokenEmbedding(
289
+ self.embedding_dim,
290
+ self.vocab_size,
291
+ self.p_dropout,
292
+ )
293
+ self.ar_audio_position = SinePositionalEmbedding(
294
+ self.embedding_dim,
295
+ dropout=0.1,
296
+ scale=False,
297
+ alpha=True,
298
+ )
299
+
300
+ self.h = TransformerEncoder(
301
+ TransformerEncoderLayer(
302
+ d_model=self.model_dim,
303
+ nhead=self.num_head,
304
+ dim_feedforward=self.model_dim * 4,
305
+ dropout=0.1,
306
+ batch_first=True,
307
+ norm_first=norm_first,
308
+ ),
309
+ num_layers=self.num_layers,
310
+ norm=LayerNorm(self.model_dim) if norm_first else None,
311
+ )
312
+
313
+ self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
314
+ self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
315
+
316
+ self.ar_accuracy_metric = MulticlassAccuracy(
317
+ self.vocab_size,
318
+ top_k=top_k,
319
+ average="micro",
320
+ multidim_average="global",
321
+ ignore_index=self.EOS,
322
+ )
323
+
324
+ blocks = []
325
+
326
+ for i in range(self.num_layers):
327
+ layer = self.h.layers[i]
328
+ t2smlp = T2SMLP(
329
+ layer.linear1.weight,
330
+ layer.linear1.bias,
331
+ layer.linear2.weight,
332
+ layer.linear2.bias,
333
+ )
334
+
335
+ block = T2SBlock(
336
+ self.num_head,
337
+ self.model_dim,
338
+ t2smlp,
339
+ layer.self_attn.in_proj_weight,
340
+ layer.self_attn.in_proj_bias,
341
+ layer.self_attn.out_proj.weight,
342
+ layer.self_attn.out_proj.bias,
343
+ layer.norm1.weight,
344
+ layer.norm1.bias,
345
+ layer.norm1.eps,
346
+ layer.norm2.weight,
347
+ layer.norm2.bias,
348
+ layer.norm2.eps,
349
+ )
350
+
351
+ blocks.append(block)
352
+
353
+ self.t2s_transformer = T2STransformer(self.num_layers, blocks)
354
+
355
+ def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
356
+ x = self.ar_text_embedding(x)
357
+ x = x + self.bert_proj(bert_feature.transpose(1, 2))
358
+ x = self.ar_text_position(x)
359
+ x_mask = make_pad_mask(x_lens)
360
+
361
+ y_mask = make_pad_mask(y_lens)
362
+ y_mask_int = y_mask.type(torch.int64)
363
+ codes = y.type(torch.int64) * (1 - y_mask_int)
364
+
365
+ # Training
366
+ # AR Decoder
367
+ y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
368
+ x_len = x_lens.max()
369
+ y_len = y_lens.max()
370
+ y_emb = self.ar_audio_embedding(y)
371
+ y_pos = self.ar_audio_position(y_emb)
372
+
373
+ xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
374
+
375
+ ar_xy_padding_mask = xy_padding_mask
376
+
377
+ x_attn_mask = F.pad(
378
+ torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
379
+ (0, y_len),
380
+ value=True,
381
+ )
382
+ # x_attn_mask[:, x_len]=False
383
+ y_attn_mask = F.pad(
384
+ torch.triu(
385
+ torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
386
+ diagonal=1,
387
+ ),
388
+ (x_len, 0),
389
+ value=False,
390
+ )
391
+
392
+ xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
393
+ bsz, src_len = x.shape[0], x_len + y_len
394
+ _xy_padding_mask = (
395
+ ar_xy_padding_mask.view(bsz, 1, 1, src_len)
396
+ .expand(-1, self.num_head, -1, -1)
397
+ .reshape(bsz * self.num_head, 1, src_len)
398
+ )
399
+ xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
400
+ new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
401
+ new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
402
+ xy_attn_mask = new_attn_mask
403
+ # x 和完整的 y 一次性输入模型
404
+ xy_pos = torch.concat([x, y_pos], dim=1)
405
+
406
+ return xy_pos, xy_attn_mask, targets
407
+
408
+ def forward(self, x, x_lens, y, y_lens, bert_feature):
409
+ """
410
+ x: phoneme_ids
411
+ y: semantic_ids
412
+ """
413
+
414
+ reject_y, reject_y_lens = make_reject_y(y, y_lens)
415
+
416
+ xy_pos, xy_attn_mask, targets = self.make_input_data(x, x_lens, y, y_lens, bert_feature)
417
+
418
+ xy_dec, _ = self.h(
419
+ (xy_pos, None),
420
+ mask=xy_attn_mask,
421
+ )
422
+ x_len = x_lens.max()
423
+ logits = self.ar_predict_layer(xy_dec[:, x_len:])
424
+
425
+ ###### DPO #############
426
+ reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(
427
+ x, x_lens, reject_y, reject_y_lens, bert_feature
428
+ )
429
+
430
+ reject_xy_dec, _ = self.h(
431
+ (reject_xy_pos, None),
432
+ mask=reject_xy_attn_mask,
433
+ )
434
+ x_len = x_lens.max()
435
+ reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len:])
436
+
437
+ # loss
438
+ # from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
439
+
440
+ loss_1 = F.cross_entropy(logits.permute(0, 2, 1), targets, reduction="sum")
441
+ acc = self.ar_accuracy_metric(logits.permute(0, 2, 1).detach(), targets).item()
442
+
443
+ A_logits, R_logits = get_batch_logps(logits, reject_logits, targets, reject_targets)
444
+ loss_2, _, _ = dpo_loss(A_logits, R_logits, 0, 0, 0.2, reference_free=True)
445
+
446
+ loss = loss_1 + loss_2
447
+
448
+ return loss, acc
449
+
450
+ def forward_old(self, x, x_lens, y, y_lens, bert_feature):
451
+ """
452
+ x: phoneme_ids
453
+ y: semantic_ids
454
+ """
455
+ x = self.ar_text_embedding(x)
456
+ x = x + self.bert_proj(bert_feature.transpose(1, 2))
457
+ x = self.ar_text_position(x)
458
+ x_mask = make_pad_mask(x_lens)
459
+
460
+ y_mask = make_pad_mask(y_lens)
461
+ y_mask_int = y_mask.type(torch.int64)
462
+ codes = y.type(torch.int64) * (1 - y_mask_int)
463
+
464
+ # Training
465
+ # AR Decoder
466
+ y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
467
+ x_len = x_lens.max()
468
+ y_len = y_lens.max()
469
+ y_emb = self.ar_audio_embedding(y)
470
+ y_pos = self.ar_audio_position(y_emb)
471
+
472
+ xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
473
+ ar_xy_padding_mask = xy_padding_mask
474
+
475
+ x_attn_mask = F.pad(
476
+ torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
477
+ (0, y_len),
478
+ value=True,
479
+ )
480
+ y_attn_mask = F.pad(
481
+ torch.triu(
482
+ torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
483
+ diagonal=1,
484
+ ),
485
+ (x_len, 0),
486
+ value=False,
487
+ )
488
+ xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
489
+ bsz, src_len = x.shape[0], x_len + y_len
490
+ _xy_padding_mask = (
491
+ ar_xy_padding_mask.view(bsz, 1, 1, src_len)
492
+ .expand(-1, self.num_head, -1, -1)
493
+ .reshape(bsz * self.num_head, 1, src_len)
494
+ )
495
+ xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
496
+ new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
497
+ new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
498
+ xy_attn_mask = new_attn_mask
499
+ # x 和完整的 y 一次性输入模型
500
+ xy_pos = torch.concat([x, y_pos], dim=1)
501
+ xy_dec, _ = self.h(
502
+ (xy_pos, None),
503
+ mask=xy_attn_mask,
504
+ )
505
+ logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
506
+ # loss
507
+ # from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
508
+ loss = F.cross_entropy(logits, targets, reduction="sum")
509
+ acc = self.ar_accuracy_metric(logits.detach(), targets).item()
510
+ return loss, acc
511
+
512
+ # 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
513
+ def infer(
514
+ self,
515
+ x,
516
+ x_lens,
517
+ prompts,
518
+ bert_feature,
519
+ top_k: int = -100,
520
+ early_stop_num: int = -1,
521
+ temperature: float = 1.0,
522
+ ):
523
+ x = self.ar_text_embedding(x)
524
+ x = x + self.bert_proj(bert_feature.transpose(1, 2))
525
+ x = self.ar_text_position(x)
526
+
527
+ # AR Decoder
528
+ y = prompts
529
+ prefix_len = y.shape[1]
530
+ x_len = x.shape[1]
531
+ x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
532
+ stop = False
533
+ for _ in tqdm(range(1500)):
534
+ y_emb = self.ar_audio_embedding(y)
535
+ y_pos = self.ar_audio_position(y_emb)
536
+ # x 和逐渐增长的 y 一起输入给模型
537
+ xy_pos = torch.concat([x, y_pos], dim=1)
538
+ y_len = y.shape[1]
539
+ x_attn_mask_pad = F.pad(
540
+ x_attn_mask,
541
+ (0, y_len),
542
+ value=True,
543
+ )
544
+ y_attn_mask = F.pad(
545
+ torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
546
+ (x_len, 0),
547
+ value=False,
548
+ )
549
+ xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(y.device)
550
+
551
+ xy_dec, _ = self.h(
552
+ (xy_pos, None),
553
+ mask=xy_attn_mask,
554
+ )
555
+ logits = self.ar_predict_layer(xy_dec[:, -1])
556
+ samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
557
+
558
+ if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
559
+ print("use early stop num:", early_stop_num)
560
+ stop = True
561
+
562
+ if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
563
+ # print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
564
+ stop = True
565
+ if stop:
566
+ if prompts.shape[1] == y.shape[1]:
567
+ y = torch.concat([y, torch.zeros_like(samples)], dim=1)
568
+ print("bad zero prediction")
569
+ print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
570
+ break
571
+ # 本次生成的 semantic_ids 和之前的 y 构成新的 y
572
+ # print(samples.shape)#[1,1]#第一个1是bs
573
+ # import os
574
+ # os._exit(2333)
575
+ y = torch.concat([y, samples], dim=1)
576
+ return y
577
+
578
+ def pad_y_eos(self, y, y_mask_int, eos_id):
579
+ targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(y_mask_int, (0, 1), value=1)
580
+ # 错位
581
+ return targets[:, :-1], targets[:, 1:]
582
+
583
+ def infer_panel_batch_infer(
584
+ self,
585
+ x: List[torch.LongTensor], #####全部文本token
586
+ x_lens: torch.LongTensor,
587
+ prompts: torch.LongTensor, ####参考音频token
588
+ bert_feature: List[torch.LongTensor],
589
+ top_k: int = -100,
590
+ top_p: int = 100,
591
+ early_stop_num: int = -1,
592
+ temperature: float = 1.0,
593
+ repetition_penalty: float = 1.35,
594
+ **kwargs,
595
+ ):
596
+ if prompts is None:
597
+ print("Warning: Prompt free is not supported batch_infer! switch to naive_infer")
598
+ return self.infer_panel_naive_batched(
599
+ x,
600
+ x_lens,
601
+ prompts,
602
+ bert_feature,
603
+ top_k=top_k,
604
+ top_p=top_p,
605
+ early_stop_num=early_stop_num,
606
+ temperature=temperature,
607
+ **kwargs,
608
+ )
609
+
610
+ max_len = kwargs.get("max_len", x_lens.max())
611
+ x_list = []
612
+ for x_item, bert_item in zip(x, bert_feature):
613
+ # max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
614
+ x_item = self.ar_text_embedding(x_item.unsqueeze(0))
615
+ x_item = x_item + self.bert_proj(bert_item.transpose(0, 1).unsqueeze(0))
616
+ x_item = self.ar_text_position(x_item).squeeze(0)
617
+ # x_item = F.pad(x_item,(0,0,0,max_len-x_item.shape[0]),value=0) if x_item.shape[0]<max_len else x_item ### padding right
618
+ x_item = (
619
+ F.pad(x_item, (0, 0, max_len - x_item.shape[0], 0), value=0) if x_item.shape[0] < max_len else x_item
620
+ ) ### padding left
621
+ x_list.append(x_item)
622
+ x: torch.Tensor = torch.stack(x_list, dim=0)
623
+
624
+ # AR Decoder
625
+ y = prompts
626
+
627
+ x_len = x.shape[1]
628
+ stop = False
629
+
630
+ k_cache = None
631
+ v_cache = None
632
+ ################### first step ##########################
633
+ assert y is not None, "Error: Prompt free is not supported batch_infer!"
634
+ ref_free = False
635
+
636
+ y_emb = self.ar_audio_embedding(y)
637
+ y_len = y_emb.shape[1]
638
+ prefix_len = y.shape[1]
639
+ y_lens = torch.LongTensor([y_emb.shape[1]] * y_emb.shape[0]).to(x.device)
640
+ y_pos = self.ar_audio_position(y_emb)
641
+ xy_pos = torch.concat([x, y_pos], dim=1)
642
+
643
+ ##### create mask #####
644
+ bsz = x.shape[0]
645
+ src_len = x_len + y_len
646
+ y_paddind_mask = make_pad_mask_left(y_lens, y_len)
647
+ x_paddind_mask = make_pad_mask_left(x_lens, max_len)
648
+
649
+ # (bsz, x_len + y_len)
650
+ padding_mask = torch.concat([x_paddind_mask, y_paddind_mask], dim=1)
651
+
652
+ x_mask = F.pad(
653
+ torch.zeros(x_len, x_len, dtype=torch.bool, device=x.device),
654
+ (0, y_len),
655
+ value=True,
656
+ )
657
+
658
+ y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
659
+ torch.triu(torch.ones(y_len, y_len, dtype=torch.bool, device=x.device), diagonal=1),
660
+ (x_len, 0),
661
+ value=False,
662
+ )
663
+
664
+ causal_mask = torch.concat([x_mask, y_mask], dim=0).view(1, src_len, src_len).repeat(bsz, 1, 1).to(x.device)
665
+ # padding_mask = padding_mask.unsqueeze(1) * padding_mask.unsqueeze(2) ### [b, x+y, x+y]
666
+ ### 上面是错误的,会导致padding的token被"看见"
667
+
668
+ # 正确的padding_mask应该是:
669
+ # | pad_len | x_len | y_len |
670
+ # [[PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
671
+ # [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
672
+ # [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6], 前3行按理说也应该被mask掉,但是为了防止计算attention时不出现nan,还是保留了,不影响结果
673
+ # [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
674
+ # [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
675
+ # [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
676
+ # [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
677
+ # [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
678
+ # [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6]]
679
+
680
+ padding_mask = padding_mask.view(bsz, 1, src_len).repeat(1, src_len, 1)
681
+
682
+ attn_mask: torch.Tensor = causal_mask.logical_or(padding_mask)
683
+ attn_mask = attn_mask.unsqueeze(1).expand(-1, self.num_head, -1, -1).bool()
684
+
685
+ # 正确的attn_mask应该是这样的:
686
+ # | pad_len | x_len | y_len |
687
+ # [[PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
688
+ # [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
689
+ # [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS], 前3行按理说也应该被mask掉,但是为了防止计算attention时不出现nan,还是保留了,不影响结果
690
+ # [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
691
+ # [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
692
+ # [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
693
+ # [PAD, PAD, PAD, 1, 2, 3, 4, EOS, EOS],
694
+ # [PAD, PAD, PAD, 1, 2, 3, 4, 5, EOS],
695
+ # [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6]]
696
+
697
+ ###### decode #####
698
+ y_list = [None] * y.shape[0]
699
+ batch_idx_map = list(range(y.shape[0]))
700
+ idx_list = [None] * y.shape[0]
701
+ for idx in tqdm(range(1500)):
702
+ if idx == 0:
703
+ xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, attn_mask, None)
704
+ else:
705
+ xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache, attn_mask)
706
+ logits = self.ar_predict_layer(xy_dec[:, -1])
707
+
708
+ if idx == 0:
709
+ attn_mask = F.pad(attn_mask[:, :, -1].unsqueeze(-2), (0, 1), value=False)
710
+ logits = logits[:, :-1]
711
+ else:
712
+ attn_mask = F.pad(attn_mask, (0, 1), value=False)
713
+
714
+ samples = sample(
715
+ logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
716
+ )[0]
717
+
718
+ y = torch.concat([y, samples], dim=1)
719
+
720
+ ####### 移除batch中已经生成完毕的序列,进一步优化计算量
721
+ tokens = torch.argmax(logits, dim=-1)
722
+ reserved_idx_of_batch_for_y = None
723
+ if (self.EOS in samples[:, 0]) or (self.EOS in tokens): ###如果生成到EOS,则停止
724
+ l1 = samples[:, 0] == self.EOS
725
+ l2 = tokens == self.EOS
726
+ l = l1.logical_or(l2)
727
+ removed_idx_of_batch_for_y = torch.where(l == True)[0].tolist()
728
+ reserved_idx_of_batch_for_y = torch.where(l == False)[0]
729
+ # batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
730
+ for i in removed_idx_of_batch_for_y:
731
+ batch_index = batch_idx_map[i]
732
+ idx_list[batch_index] = idx
733
+ y_list[batch_index] = y[i, :-1]
734
+
735
+ batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
736
+
737
+ # 只保留batch中未生成完毕的序列
738
+ if reserved_idx_of_batch_for_y is not None:
739
+ # index = torch.LongTensor(batch_idx_map).to(y.device)
740
+ y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
741
+ attn_mask = torch.index_select(attn_mask, dim=0, index=reserved_idx_of_batch_for_y)
742
+ if k_cache is not None:
743
+ for i in range(len(k_cache)):
744
+ k_cache[i] = torch.index_select(k_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
745
+ v_cache[i] = torch.index_select(v_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
746
+
747
+ if (early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num) or idx == 1499:
748
+ print("use early stop num:", early_stop_num)
749
+ stop = True
750
+ for i, batch_index in enumerate(batch_idx_map):
751
+ batch_index = batch_idx_map[i]
752
+ idx_list[batch_index] = idx
753
+ y_list[batch_index] = y[i, :-1]
754
+
755
+ if None not in idx_list:
756
+ stop = True
757
+
758
+ if stop:
759
+ if y.shape[1] == 0:
760
+ y = torch.concat([y, torch.zeros_like(samples)], dim=1)
761
+ print("bad zero prediction")
762
+ print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
763
+ break
764
+
765
+ ####################### update next step ###################################
766
+ y_emb = self.ar_audio_embedding(y[:, -1:])
767
+ xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[
768
+ :, y_len + idx
769
+ ].to(dtype=y_emb.dtype, device=y_emb.device)
770
+
771
+ if None in idx_list:
772
+ for i in range(x.shape[0]):
773
+ if idx_list[i] is None:
774
+ idx_list[i] = 1500 - 1 ###如果没有生成到EOS,就用最大长度代替
775
+
776
+ if ref_free:
777
+ return y_list, [0] * x.shape[0]
778
+ # print(idx_list)
779
+ return y_list, idx_list
780
+
781
+ def infer_panel_naive_batched(
782
+ self,
783
+ x: List[torch.LongTensor], #####全部文本token
784
+ x_lens: torch.LongTensor,
785
+ prompts: torch.LongTensor, ####参考音频token
786
+ bert_feature: List[torch.LongTensor],
787
+ top_k: int = -100,
788
+ top_p: int = 100,
789
+ early_stop_num: int = -1,
790
+ temperature: float = 1.0,
791
+ repetition_penalty: float = 1.35,
792
+ **kwargs,
793
+ ):
794
+ y_list = []
795
+ idx_list = []
796
+ for i in range(len(x)):
797
+ y, idx = self.infer_panel_naive(
798
+ x[i].unsqueeze(0),
799
+ x_lens[i],
800
+ prompts[i].unsqueeze(0) if prompts is not None else None,
801
+ bert_feature[i].unsqueeze(0),
802
+ top_k,
803
+ top_p,
804
+ early_stop_num,
805
+ temperature,
806
+ repetition_penalty,
807
+ **kwargs,
808
+ )
809
+ y_list.append(y[0])
810
+ idx_list.append(idx)
811
+
812
+ return y_list, idx_list
813
+
814
+ def infer_panel_naive(
815
+ self,
816
+ x: torch.LongTensor, #####全部文本token
817
+ x_lens: torch.LongTensor,
818
+ prompts: torch.LongTensor, ####参考音频token
819
+ bert_feature: torch.LongTensor,
820
+ top_k: int = -100,
821
+ top_p: int = 100,
822
+ early_stop_num: int = -1,
823
+ temperature: float = 1.0,
824
+ repetition_penalty: float = 1.35,
825
+ **kwargs,
826
+ ):
827
+ x = self.ar_text_embedding(x)
828
+ x = x + self.bert_proj(bert_feature.transpose(1, 2))
829
+ x = self.ar_text_position(x)
830
+
831
+ # AR Decoder
832
+ y = prompts
833
+
834
+ x_len = x.shape[1]
835
+ x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
836
+ stop = False
837
+ # print(1111111,self.num_layers)
838
+
839
+ k_cache = None
840
+ v_cache = None
841
+ ################### first step ##########################
842
+ if y is not None:
843
+ y_emb = self.ar_audio_embedding(y)
844
+ y_len = y_emb.shape[1]
845
+ prefix_len = y.shape[1]
846
+ y_pos = self.ar_audio_position(y_emb)
847
+ xy_pos = torch.concat([x, y_pos], dim=1)
848
+ ref_free = False
849
+ else:
850
+ y_emb = None
851
+ y_len = 0
852
+ prefix_len = 0
853
+ y_pos = None
854
+ xy_pos = x
855
+ y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
856
+ ref_free = True
857
+
858
+ bsz = x.shape[0]
859
+ src_len = x_len + y_len
860
+ x_attn_mask_pad = F.pad(
861
+ x_attn_mask,
862
+ (0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
863
+ value=True,
864
+ )
865
+ y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
866
+ torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
867
+ (x_len, 0),
868
+ value=False,
869
+ )
870
+ xy_attn_mask = (
871
+ torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
872
+ .unsqueeze(0)
873
+ .expand(bsz * self.num_head, -1, -1)
874
+ .view(bsz, self.num_head, src_len, src_len)
875
+ .to(device=x.device, dtype=torch.bool)
876
+ )
877
+
878
+ for idx in tqdm(range(1500)):
879
+ if xy_attn_mask is not None:
880
+ xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
881
+ else:
882
+ xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
883
+
884
+ logits = self.ar_predict_layer(xy_dec[:, -1])
885
+
886
+ if idx == 0:
887
+ xy_attn_mask = None
888
+ if idx < 11: ###至少预测出10个token不然不给停止(0.4s)
889
+ logits = logits[:, :-1]
890
+
891
+ samples = sample(
892
+ logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
893
+ )[0]
894
+
895
+ y = torch.concat([y, samples], dim=1)
896
+
897
+ if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
898
+ print("use early stop num:", early_stop_num)
899
+ stop = True
900
+
901
+ if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
902
+ stop = True
903
+ if stop:
904
+ if y.shape[1] == 0:
905
+ y = torch.concat([y, torch.zeros_like(samples)], dim=1)
906
+ print("bad zero prediction")
907
+ print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
908
+ break
909
+
910
+ ####################### update next step ###################################
911
+ y_emb = self.ar_audio_embedding(y[:, -1:])
912
+ xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[
913
+ :, y_len + idx
914
+ ].to(dtype=y_emb.dtype, device=y_emb.device)
915
+
916
+ if ref_free:
917
+ return y[:, :-1], 0
918
+ return y[:, :-1], idx
919
+
920
+ def infer_panel(
921
+ self,
922
+ x: torch.LongTensor, #####全部文本token
923
+ x_lens: torch.LongTensor,
924
+ prompts: torch.LongTensor, ####参考音频token
925
+ bert_feature: torch.LongTensor,
926
+ top_k: int = -100,
927
+ top_p: int = 100,
928
+ early_stop_num: int = -1,
929
+ temperature: float = 1.0,
930
+ repetition_penalty: float = 1.35,
931
+ **kwargs,
932
+ ):
933
+ return self.infer_panel_naive(
934
+ x, x_lens, prompts, bert_feature, top_k, top_p, early_stop_num, temperature, repetition_penalty, **kwargs
935
+ )
GPT_SoVITS/AR/models/t2s_model_onnx.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
2
+ # reference: https://github.com/lifeiteng/vall-e
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+ from torchmetrics.classification import MulticlassAccuracy
7
+
8
+ from AR.modules.embedding_onnx import SinePositionalEmbedding, TokenEmbedding
9
+ from AR.modules.transformer_onnx import LayerNorm, TransformerEncoder, TransformerEncoderLayer
10
+
11
+ default_config = {
12
+ "embedding_dim": 512,
13
+ "hidden_dim": 512,
14
+ "num_head": 8,
15
+ "num_layers": 12,
16
+ "num_codebook": 8,
17
+ "p_dropout": 0.0,
18
+ "vocab_size": 1024 + 1,
19
+ "phoneme_vocab_size": 512,
20
+ "EOS": 1024,
21
+ }
22
+
23
+ inf_tensor_value = torch.FloatTensor([-float("Inf")]).float()
24
+
25
+
26
+ def logits_to_probs(
27
+ logits,
28
+ previous_tokens=None,
29
+ temperature: float = 1.0,
30
+ top_k=None,
31
+ top_p=None,
32
+ repetition_penalty: float = 1.0,
33
+ ):
34
+ previous_tokens = previous_tokens.squeeze()
35
+ if previous_tokens is not None and repetition_penalty != 1.0:
36
+ previous_tokens = previous_tokens.long()
37
+ score = torch.gather(logits, dim=0, index=previous_tokens)
38
+ score = torch.where(
39
+ score < 0,
40
+ score * repetition_penalty,
41
+ score / repetition_penalty,
42
+ )
43
+ logits.scatter_(dim=0, index=previous_tokens, src=score)
44
+
45
+ if top_p is not None and top_p < 1.0:
46
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
47
+ cum_probs = torch.cumsum(
48
+ torch.nn.functional.softmax(
49
+ sorted_logits,
50
+ dim=-1,
51
+ ),
52
+ dim=-1,
53
+ )
54
+ sorted_indices_to_remove = cum_probs > top_p
55
+ sorted_indices_to_remove[0] = False # keep at least one option
56
+ indices_to_remove = sorted_indices_to_remove.scatter(
57
+ dim=0,
58
+ index=sorted_indices,
59
+ src=sorted_indices_to_remove,
60
+ )
61
+ logits = logits.masked_fill(indices_to_remove, -float("Inf"))
62
+
63
+ logits = logits / max(temperature, 1e-5)
64
+
65
+ if top_k is not None:
66
+ v, _ = torch.topk(logits, top_k)
67
+ pivot = v.select(-1, -1).unsqueeze(-1)
68
+ logits = torch.where(logits < pivot, inf_tensor_value, logits)
69
+
70
+ probs = torch.nn.functional.softmax(logits, dim=-1)
71
+ return probs
72
+
73
+
74
+ def multinomial_sample_one_no_sync(
75
+ probs_sort,
76
+ ): # Does multinomial sampling without a cuda synchronization
77
+ q = torch.randn_like(probs_sort)
78
+ return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
79
+
80
+
81
+ def sample(
82
+ logits,
83
+ previous_tokens,
84
+ **sampling_kwargs,
85
+ ):
86
+ probs = logits_to_probs(
87
+ logits=logits,
88
+ previous_tokens=previous_tokens,
89
+ **sampling_kwargs,
90
+ )
91
+ idx_next = multinomial_sample_one_no_sync(probs)
92
+ return idx_next, probs
93
+
94
+
95
+ class OnnxEncoder(nn.Module):
96
+ def __init__(self, ar_text_embedding, bert_proj, ar_text_position):
97
+ super().__init__()
98
+ self.ar_text_embedding = ar_text_embedding
99
+ self.bert_proj = bert_proj
100
+ self.ar_text_position = ar_text_position
101
+
102
+ def forward(self, x, bert_feature):
103
+ x = self.ar_text_embedding(x)
104
+ x = x + self.bert_proj(bert_feature.transpose(1, 2))
105
+ return self.ar_text_position(x)
106
+
107
+
108
+ class T2SFirstStageDecoder(nn.Module):
109
+ def __init__(
110
+ self,
111
+ ar_audio_embedding,
112
+ ar_audio_position,
113
+ h,
114
+ ar_predict_layer,
115
+ loss_fct,
116
+ ar_accuracy_metric,
117
+ top_k,
118
+ early_stop_num,
119
+ num_layers,
120
+ ):
121
+ super().__init__()
122
+ self.ar_audio_embedding = ar_audio_embedding
123
+ self.ar_audio_position = ar_audio_position
124
+ self.h = h
125
+ self.ar_predict_layer = ar_predict_layer
126
+ self.loss_fct = loss_fct
127
+ self.ar_accuracy_metric = ar_accuracy_metric
128
+ self.top_k = top_k
129
+ self.early_stop_num = early_stop_num
130
+ self.num_layers = num_layers
131
+
132
+ def forward(self, x, prompt):
133
+ y = prompt
134
+ x_example = x[:, :, 0] * 0.0
135
+ # N, 1, 512
136
+ cache = {
137
+ "all_stage": self.num_layers,
138
+ "k": None,
139
+ "v": None,
140
+ "y_emb": None,
141
+ "first_infer": 1,
142
+ "stage": 0,
143
+ }
144
+
145
+ y_emb = self.ar_audio_embedding(y)
146
+
147
+ cache["y_emb"] = y_emb
148
+ y_pos = self.ar_audio_position(y_emb)
149
+
150
+ xy_pos = torch.concat([x, y_pos], dim=1)
151
+
152
+ y_example = y_pos[:, :, 0] * 0.0
153
+ x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example).bool()
154
+ y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64)
155
+ y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
156
+ torch.ones_like(
157
+ y_example.transpose(0, 1),
158
+ dtype=torch.int64,
159
+ ),
160
+ dim=0,
161
+ )
162
+ y_attn_mask = y_attn_mask > 0
163
+
164
+ x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool()
165
+ y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool()
166
+ x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1)
167
+ y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
168
+ xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
169
+ cache["k"] = (
170
+ torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))
171
+ .unsqueeze(1)
172
+ .repeat(self.num_layers, 1, 1, 1)
173
+ )
174
+ cache["v"] = (
175
+ torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))
176
+ .unsqueeze(1)
177
+ .repeat(self.num_layers, 1, 1, 1)
178
+ )
179
+
180
+ xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
181
+ logits = self.ar_predict_layer(xy_dec[:, -1])
182
+ samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
183
+
184
+ y = torch.concat([y, samples], dim=1)
185
+
186
+ return y, cache["k"], cache["v"], cache["y_emb"], x_example
187
+
188
+
189
+ class T2SStageDecoder(nn.Module):
190
+ def __init__(
191
+ self,
192
+ ar_audio_embedding,
193
+ ar_audio_position,
194
+ h,
195
+ ar_predict_layer,
196
+ loss_fct,
197
+ ar_accuracy_metric,
198
+ top_k,
199
+ early_stop_num,
200
+ num_layers,
201
+ ):
202
+ super().__init__()
203
+ self.ar_audio_embedding = ar_audio_embedding
204
+ self.ar_audio_position = ar_audio_position
205
+ self.h = h
206
+ self.ar_predict_layer = ar_predict_layer
207
+ self.loss_fct = loss_fct
208
+ self.ar_accuracy_metric = ar_accuracy_metric
209
+ self.top_k = top_k
210
+ self.early_stop_num = early_stop_num
211
+ self.num_layers = num_layers
212
+
213
+ def forward(self, y, k, v, y_emb, x_example):
214
+ cache = {
215
+ "all_stage": self.num_layers,
216
+ "k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)),
217
+ "v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)),
218
+ "y_emb": y_emb,
219
+ "first_infer": 0,
220
+ "stage": 0,
221
+ }
222
+
223
+ y_emb = torch.cat(
224
+ [
225
+ cache["y_emb"],
226
+ self.ar_audio_embedding(y[:, -1:]),
227
+ ],
228
+ 1,
229
+ )
230
+ cache["y_emb"] = y_emb
231
+ y_pos = self.ar_audio_position(y_emb)
232
+
233
+ xy_pos = y_pos[:, -1:]
234
+
235
+ y_example = y_pos[:, :, 0] * 0.0
236
+
237
+ xy_attn_mask = torch.cat([x_example, y_example], dim=1)
238
+ xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool)
239
+
240
+ xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
241
+ logits = self.ar_predict_layer(xy_dec[:, -1])
242
+ samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
243
+
244
+ y = torch.concat([y, samples], dim=1)
245
+
246
+ return y, cache["k"], cache["v"], cache["y_emb"], logits, samples
247
+
248
+
249
+ class Text2SemanticDecoder(nn.Module):
250
+ def __init__(self, config, norm_first=False, top_k=3):
251
+ super(Text2SemanticDecoder, self).__init__()
252
+ self.model_dim = config["model"]["hidden_dim"]
253
+ self.embedding_dim = config["model"]["embedding_dim"]
254
+ self.num_head = config["model"]["head"]
255
+ self.num_layers = config["model"]["n_layer"]
256
+ self.norm_first = norm_first
257
+ self.vocab_size = config["model"]["vocab_size"]
258
+ self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
259
+ self.p_dropout = float(config["model"]["dropout"])
260
+ self.EOS = config["model"]["EOS"]
261
+ self.norm_first = norm_first
262
+ assert self.EOS == self.vocab_size - 1
263
+ self.bert_proj = nn.Linear(1024, self.embedding_dim)
264
+ self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
265
+ self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
266
+ self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout)
267
+ self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
268
+ self.h = TransformerEncoder(
269
+ TransformerEncoderLayer(
270
+ d_model=self.model_dim,
271
+ nhead=self.num_head,
272
+ dim_feedforward=self.model_dim * 4,
273
+ dropout=0.1,
274
+ batch_first=True,
275
+ norm_first=norm_first,
276
+ ),
277
+ num_layers=self.num_layers,
278
+ norm=LayerNorm(self.model_dim) if norm_first else None,
279
+ )
280
+ self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
281
+ self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
282
+ self.ar_accuracy_metric = MulticlassAccuracy(
283
+ self.vocab_size,
284
+ top_k=top_k,
285
+ average="micro",
286
+ multidim_average="global",
287
+ ignore_index=self.EOS,
288
+ )
289
+ self.top_k = torch.LongTensor([1])
290
+ self.early_stop_num = torch.LongTensor([-1])
291
+
292
+ def init_onnx(self):
293
+ self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position)
294
+ self.first_stage_decoder = T2SFirstStageDecoder(
295
+ self.ar_audio_embedding,
296
+ self.ar_audio_position,
297
+ self.h,
298
+ self.ar_predict_layer,
299
+ self.loss_fct,
300
+ self.ar_accuracy_metric,
301
+ self.top_k,
302
+ self.early_stop_num,
303
+ self.num_layers,
304
+ )
305
+ self.stage_decoder = T2SStageDecoder(
306
+ self.ar_audio_embedding,
307
+ self.ar_audio_position,
308
+ self.h,
309
+ self.ar_predict_layer,
310
+ self.loss_fct,
311
+ self.ar_accuracy_metric,
312
+ self.top_k,
313
+ self.early_stop_num,
314
+ self.num_layers,
315
+ )
316
+
317
+ def forward(self, x, prompts, bert_feature):
318
+ early_stop_num = self.early_stop_num
319
+ prefix_len = prompts.shape[1]
320
+
321
+ x = self.onnx_encoder(x, bert_feature)
322
+ y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts)
323
+
324
+ stop = False
325
+ for idx in range(1, 1500):
326
+ enco = self.stage_decoder(y, k, v, y_emb, stage, x_example)
327
+ y, k, v, y_emb, stage, logits, samples = enco
328
+ if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
329
+ stop = True
330
+ if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
331
+ stop = True
332
+ if stop:
333
+ break
334
+ y[0, -1] = 0
335
+ return y, idx
336
+
337
+ def infer(self, x, prompts, bert_feature):
338
+ top_k = self.top_k
339
+ early_stop_num = self.early_stop_num
340
+
341
+ x = self.onnx_encoder(x, bert_feature)
342
+
343
+ y = prompts
344
+ prefix_len = y.shape[1]
345
+ x_len = x.shape[1]
346
+ x_example = x[:, :, 0] * 0.0
347
+ x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example)
348
+ x_attn_mask = torch.zeros_like(x_attn_mask, dtype=torch.bool)
349
+
350
+ stop = False
351
+ cache = {
352
+ "all_stage": self.num_layers,
353
+ "k": [None] * self.num_layers,
354
+ "v": [None] * self.num_layers,
355
+ "y_emb": None,
356
+ "first_infer": 1,
357
+ "stage": 0,
358
+ }
359
+ for idx in range(1500):
360
+ if cache["first_infer"] == 1:
361
+ y_emb = self.ar_audio_embedding(y)
362
+ else:
363
+ y_emb = torch.cat([cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1)
364
+ cache["y_emb"] = y_emb
365
+ y_pos = self.ar_audio_position(y_emb)
366
+ if cache["first_infer"] == 1:
367
+ xy_pos = torch.concat([x, y_pos], dim=1)
368
+ else:
369
+ xy_pos = y_pos[:, -1:]
370
+ y_len = y_pos.shape[1]
371
+ if cache["first_infer"] == 1:
372
+ x_attn_mask_pad = F.pad(x_attn_mask, (0, y_len), value=True)
373
+ y_attn_mask = F.pad(
374
+ torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
375
+ (x_len, 0),
376
+ value=False,
377
+ )
378
+ xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
379
+ else:
380
+ xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool)
381
+ xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
382
+ logits = self.ar_predict_layer(xy_dec[:, -1])
383
+ samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
384
+ if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
385
+ stop = True
386
+ if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
387
+ stop = True
388
+ if stop:
389
+ if prompts.shape[1] == y.shape[1]:
390
+ y = torch.concat([y, torch.zeros_like(samples)], dim=1)
391
+ break
392
+ y = torch.concat([y, samples], dim=1)
393
+ cache["first_infer"] = 0
394
+ return y, idx
GPT_SoVITS/AR/models/utils.py ADDED
@@ -0,0 +1,282 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/utils.py
2
+ # reference: https://github.com/lifeiteng/vall-e
3
+ from typing import Tuple
4
+
5
+ import torch
6
+ import torch.nn.functional as F
7
+
8
+
9
+ def sequence_mask(length, max_length=None):
10
+ if max_length is None:
11
+ max_length = length.max()
12
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
13
+ return x.unsqueeze(0) < length.unsqueeze(1)
14
+
15
+
16
+ def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
17
+ """
18
+ Args:
19
+ lengths:
20
+ A 1-D tensor containing sentence lengths.
21
+ max_len:
22
+ The length of masks.
23
+ Returns:
24
+ Return a 2-D bool tensor, where masked positions
25
+ are filled with `True` and non-masked positions are
26
+ filled with `False`.
27
+
28
+ #>>> lengths = torch.tensor([1, 3, 2, 5])
29
+ #>>> make_pad_mask(lengths)
30
+ tensor([[False, True, True, True, True],
31
+ [False, False, False, True, True],
32
+ [False, False, True, True, True],
33
+ [False, False, False, False, False]])
34
+ """
35
+ assert lengths.ndim == 1, lengths.ndim
36
+ max_len = max(max_len, lengths.max())
37
+ n = lengths.size(0)
38
+ seq_range = torch.arange(0, max_len, device=lengths.device)
39
+ expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
40
+
41
+ return expaned_lengths >= lengths.unsqueeze(-1)
42
+
43
+
44
+ def make_pad_mask_left(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
45
+ """
46
+ Args:
47
+ lengths:
48
+ A 1-D tensor containing sentence lengths.
49
+ max_len:
50
+ The length of masks.
51
+ Returns:
52
+ Return a 2-D bool tensor, where masked positions
53
+ are filled with `True` and non-masked positions are
54
+ filled with `False`.
55
+
56
+ #>>> lengths = torch.tensor([1, 3, 2, 5])
57
+ #>>> make_pad_mask(lengths)
58
+ tensor(
59
+ [
60
+ [True, True, False],
61
+ [True, False, False],
62
+ [True, True, False],
63
+ ...
64
+ ]
65
+ )
66
+ """
67
+ assert lengths.ndim == 1, lengths.ndim
68
+ max_len = max(max_len, lengths.max())
69
+ n = lengths.size(0)
70
+ seq_range = torch.arange(0, max_len, device=lengths.device)
71
+ expaned_lengths = seq_range.unsqueeze(0).repeat(n, 1)
72
+ expaned_lengths -= (max_len - lengths).unsqueeze(-1)
73
+
74
+ return expaned_lengths < 0
75
+
76
+
77
+ # https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
78
+ def top_k_top_p_filtering(
79
+ logits,
80
+ top_k=0,
81
+ top_p=1.0,
82
+ filter_value=-float("Inf"),
83
+ min_tokens_to_keep=1,
84
+ ):
85
+ """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
86
+ Args:
87
+ logits: logits distribution shape (batch size, vocabulary size)
88
+ if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
89
+ if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
90
+ Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
91
+ Make sure we keep at least min_tokens_to_keep per batch example in the output
92
+ From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
93
+ """
94
+ if top_k > 0:
95
+ top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
96
+ # Remove all tokens with a probability less than the last token of the top-k
97
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
98
+ logits[indices_to_remove] = filter_value
99
+
100
+ if top_p < 1.0:
101
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
102
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
103
+
104
+ # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
105
+ sorted_indices_to_remove = cumulative_probs > top_p
106
+ if min_tokens_to_keep > 1:
107
+ # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
108
+ sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
109
+ # Shift the indices to the right to keep also the first token above the threshold
110
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
111
+ sorted_indices_to_remove[..., 0] = 0
112
+
113
+ # scatter sorted tensors to original indexing
114
+ indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
115
+ logits[indices_to_remove] = filter_value
116
+ return logits
117
+
118
+
119
+ def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
120
+ # temperature: (`optional`) float
121
+ # The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
122
+ # top_k: (`optional`) int
123
+ # The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
124
+ # top_p: (`optional`) float
125
+ # The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
126
+
127
+ # Temperature (higher temperature => more likely to sample low probability tokens)
128
+ if temperature != 1.0:
129
+ logits = logits / temperature
130
+ # Top-p/top-k filtering
131
+ logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
132
+ # Sample
133
+ token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
134
+ return token
135
+
136
+
137
+ from typing import Optional
138
+
139
+
140
+ def multinomial_sample_one_no_sync(
141
+ probs_sort,
142
+ ): # Does multinomial sampling without a cuda synchronization
143
+ q = torch.empty_like(probs_sort).exponential_(1)
144
+ return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
145
+
146
+
147
+ def logits_to_probs(
148
+ logits,
149
+ previous_tokens: Optional[torch.Tensor] = None,
150
+ temperature: float = 1.0,
151
+ top_k: Optional[int] = None,
152
+ top_p: Optional[int] = None,
153
+ repetition_penalty: float = 1.0,
154
+ ):
155
+ # if previous_tokens is not None:
156
+ # previous_tokens = previous_tokens.squeeze()
157
+ # print(logits.shape,previous_tokens.shape)
158
+ # pdb.set_trace()
159
+ if previous_tokens is not None and repetition_penalty != 1.0:
160
+ previous_tokens = previous_tokens.long()
161
+ score = torch.gather(logits, dim=1, index=previous_tokens)
162
+ score = torch.where(
163
+ score < 0,
164
+ score * repetition_penalty,
165
+ score / repetition_penalty,
166
+ )
167
+ logits.scatter_(dim=1, index=previous_tokens, src=score)
168
+
169
+ if top_p is not None and top_p < 1.0:
170
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
171
+ cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
172
+ sorted_indices_to_remove = cum_probs > top_p
173
+ sorted_indices_to_remove[:, 0] = False # keep at least one option
174
+ indices_to_remove = sorted_indices_to_remove.scatter(
175
+ dim=1,
176
+ index=sorted_indices,
177
+ src=sorted_indices_to_remove,
178
+ )
179
+ logits = logits.masked_fill(indices_to_remove, -float("Inf"))
180
+
181
+ logits = logits / max(temperature, 1e-5)
182
+
183
+ if top_k is not None:
184
+ v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
185
+ pivot = v[:, -1].unsqueeze(-1)
186
+ logits = torch.where(logits < pivot, -float("Inf"), logits)
187
+
188
+ probs = torch.nn.functional.softmax(logits, dim=-1)
189
+ return probs
190
+
191
+
192
+ def sample(
193
+ logits,
194
+ previous_tokens: Optional[torch.Tensor] = None,
195
+ **sampling_kwargs,
196
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
197
+ probs = logits_to_probs(logits=logits, previous_tokens=previous_tokens, **sampling_kwargs)
198
+ idx_next = multinomial_sample_one_no_sync(probs)
199
+ return idx_next, probs
200
+
201
+
202
+ def dpo_loss(
203
+ policy_chosen_logps: torch.FloatTensor,
204
+ policy_rejected_logps: torch.FloatTensor,
205
+ reference_chosen_logps: torch.FloatTensor,
206
+ reference_rejected_logps: torch.FloatTensor,
207
+ beta: float,
208
+ reference_free: bool = False,
209
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
210
+ pi_logratios = policy_chosen_logps - policy_rejected_logps
211
+ ref_logratios = reference_chosen_logps - reference_rejected_logps
212
+
213
+ if reference_free:
214
+ ref_logratios = 0
215
+
216
+ logits = pi_logratios - ref_logratios
217
+
218
+ losses = -F.logsigmoid(beta * logits)
219
+ chosen_rewards = beta * (policy_chosen_logps - reference_chosen_logps).detach()
220
+ rejected_rewards = beta * (policy_rejected_logps - reference_rejected_logps).detach()
221
+
222
+ return losses.mean(), chosen_rewards, rejected_rewards
223
+
224
+
225
+ def get_batch_logps(
226
+ logits_target: torch.FloatTensor,
227
+ logits_reject: torch.FloatTensor,
228
+ labels_target: torch.LongTensor,
229
+ labels_reject: torch.LongTensor,
230
+ average_log_prob: bool = False,
231
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
232
+ # dummy token; we'll ignore the losses on these tokens later
233
+
234
+ per_token_logps_target = torch.gather(
235
+ logits_target.log_softmax(-1), dim=2, index=labels_target.unsqueeze(2)
236
+ ).squeeze(2)
237
+ per_token_logps_reject = torch.gather(
238
+ logits_reject.log_softmax(-1), dim=2, index=labels_reject.unsqueeze(2)
239
+ ).squeeze(2)
240
+
241
+ return per_token_logps_target.sum(-1), per_token_logps_reject.sum(-1)
242
+
243
+
244
+ def make_reject_y(y_o, y_lens):
245
+ def repeat_P(y):
246
+ range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
247
+ pre = y[: range_idx[0]]
248
+ shf = y[range_idx[1] :]
249
+ range_text = y[range_idx[0] : range_idx[1]]
250
+ new_y = torch.cat([pre, range_text, range_text, shf])
251
+ return new_y
252
+
253
+ def lost_P(y):
254
+ range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
255
+ pre = y[: range_idx[0]]
256
+ shf = y[range_idx[1] :]
257
+ range_text = y[range_idx[0] : range_idx[1]]
258
+ new_y = torch.cat([pre, shf])
259
+ return new_y
260
+
261
+ bs = len(y_lens)
262
+ reject_y = []
263
+ reject_y_lens = []
264
+ for b in range(bs):
265
+ process_item_idx = torch.randint(0, 1, size=(1,))[0]
266
+ if process_item_idx == 0:
267
+ new_y = repeat_P(y_o[b])
268
+ reject_y.append(new_y)
269
+ reject_y_lens.append(len(new_y))
270
+ elif process_item_idx == 1:
271
+ new_y = lost_P(y_o[b])
272
+ reject_y.append(new_y)
273
+ reject_y_lens.append(len(new_y))
274
+ max_length = max(reject_y_lens)
275
+ for b in range(bs):
276
+ pad_length = max_length - reject_y_lens[b]
277
+ reject_y[b] = torch.cat([reject_y[b], torch.zeros(pad_length, dtype=y_o.dtype, device=y_o.device)], dim=0)
278
+
279
+ reject_y = torch.stack(reject_y, dim=0)
280
+ reject_y_lens = torch.tensor(reject_y_lens, device=y_lens.device)
281
+
282
+ return reject_y, reject_y_lens
GPT_SoVITS/AR/modules/__init__.py ADDED
File without changes
GPT_SoVITS/AR/modules/activation.py ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
2
+ from typing import Optional, Tuple
3
+
4
+ import torch
5
+ from torch import Tensor
6
+ from torch.nn import Linear, Module
7
+ from torch.nn import functional as F
8
+ from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
9
+ from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
10
+ from torch.nn.parameter import Parameter
11
+
12
+ from AR.modules.patched_mha_with_cache import multi_head_attention_forward_patched
13
+
14
+ F.multi_head_attention_forward = multi_head_attention_forward_patched
15
+
16
+
17
+ class MultiheadAttention(Module):
18
+ r"""Allows the model to jointly attend to information
19
+ from different representation subspaces as described in the paper:
20
+ `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
21
+
22
+ Multi-Head Attention is defined as:
23
+
24
+ .. math::
25
+ \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
26
+
27
+ where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
28
+
29
+ ``forward()`` will use a special optimized implementation if all of the following
30
+ conditions are met:
31
+
32
+ - self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
33
+ restriction will be loosened in the future.)
34
+ - Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
35
+ - training is disabled (using ``.eval()``)
36
+ - dropout is 0
37
+ - ``add_bias_kv`` is ``False``
38
+ - ``add_zero_attn`` is ``False``
39
+ - ``batch_first`` is ``True`` and the input is batched
40
+ - ``kdim`` and ``vdim`` are equal to ``embed_dim``
41
+ - at most one of ``key_padding_mask`` or ``attn_mask`` is passed
42
+ - if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
43
+ nor ``attn_mask`` is passed
44
+
45
+ If the optimized implementation is in use, a
46
+ `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
47
+ ``query``/``key``/``value`` to represent padding more efficiently than using a
48
+ padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
49
+ will be returned, and an additional speedup proportional to the fraction of the input
50
+ that is padding can be expected.
51
+
52
+ Args:
53
+ embed_dim: Total dimension of the model.
54
+ num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
55
+ across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
56
+ dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
57
+ bias: If specified, adds bias to input / output projection layers. Default: ``True``.
58
+ add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
59
+ add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
60
+ Default: ``False``.
61
+ kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
62
+ vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
63
+ batch_first: If ``True``, then the input and output tensors are provided
64
+ as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
65
+
66
+ Examples::
67
+
68
+ >>> # xdoctest: +SKIP
69
+ >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
70
+ >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
71
+
72
+ """
73
+
74
+ __constants__ = ["batch_first"]
75
+ bias_k: Optional[torch.Tensor]
76
+ bias_v: Optional[torch.Tensor]
77
+
78
+ def __init__(
79
+ self,
80
+ embed_dim,
81
+ num_heads,
82
+ dropout=0.0,
83
+ bias=True,
84
+ add_bias_kv=False,
85
+ add_zero_attn=False,
86
+ kdim=None,
87
+ vdim=None,
88
+ batch_first=False,
89
+ linear1_cls=Linear,
90
+ linear2_cls=Linear,
91
+ device=None,
92
+ dtype=None,
93
+ ) -> None:
94
+ factory_kwargs = {"device": device, "dtype": dtype}
95
+ super(MultiheadAttention, self).__init__()
96
+ self.embed_dim = embed_dim
97
+ self.kdim = kdim if kdim is not None else embed_dim
98
+ self.vdim = vdim if vdim is not None else embed_dim
99
+ self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
100
+
101
+ self.num_heads = num_heads
102
+ self.dropout = dropout
103
+ self.batch_first = batch_first
104
+ self.head_dim = embed_dim // num_heads
105
+ assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
106
+
107
+ if add_bias_kv:
108
+ self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
109
+ self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
110
+ else:
111
+ self.bias_k = self.bias_v = None
112
+
113
+ if linear1_cls == Linear:
114
+ if not self._qkv_same_embed_dim:
115
+ self.q_proj_weight = Parameter(
116
+ torch.empty((embed_dim, embed_dim), **factory_kwargs),
117
+ )
118
+ self.k_proj_weight = Parameter(
119
+ torch.empty((embed_dim, self.kdim), **factory_kwargs),
120
+ )
121
+ self.v_proj_weight = Parameter(
122
+ torch.empty((embed_dim, self.vdim), **factory_kwargs),
123
+ )
124
+ self.register_parameter("in_proj_weight", None)
125
+ else:
126
+ self.in_proj_weight = Parameter(
127
+ torch.empty((3 * embed_dim, embed_dim), **factory_kwargs),
128
+ )
129
+ self.register_parameter("q_proj_weight", None)
130
+ self.register_parameter("k_proj_weight", None)
131
+ self.register_parameter("v_proj_weight", None)
132
+
133
+ if bias:
134
+ self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
135
+ else:
136
+ self.register_parameter("in_proj_bias", None)
137
+ self.out_proj = NonDynamicallyQuantizableLinear(
138
+ embed_dim,
139
+ embed_dim,
140
+ bias=bias,
141
+ **factory_kwargs,
142
+ )
143
+
144
+ self._reset_parameters()
145
+ else:
146
+ if not self._qkv_same_embed_dim:
147
+ raise NotImplementedError
148
+ else:
149
+ self.in_proj_linear = linear1_cls(
150
+ embed_dim,
151
+ 3 * embed_dim,
152
+ bias=bias,
153
+ **factory_kwargs,
154
+ )
155
+ self.in_proj_weight = self.in_proj_linear.weight
156
+
157
+ self.register_parameter("q_proj_weight", None)
158
+ self.register_parameter("k_proj_weight", None)
159
+ self.register_parameter("v_proj_weight", None)
160
+
161
+ if bias:
162
+ self.in_proj_bias = self.in_proj_linear.bias
163
+ else:
164
+ self.register_parameter("in_proj_bias", None)
165
+
166
+ self.out_proj = linear2_cls(
167
+ embed_dim,
168
+ embed_dim,
169
+ bias=bias,
170
+ **factory_kwargs,
171
+ )
172
+
173
+ if self.bias_k is not None:
174
+ xavier_normal_(self.bias_k)
175
+ if self.bias_v is not None:
176
+ xavier_normal_(self.bias_v)
177
+
178
+ self.add_zero_attn = add_zero_attn
179
+
180
+ def _reset_parameters(self):
181
+ if self._qkv_same_embed_dim:
182
+ xavier_uniform_(self.in_proj_weight)
183
+ else:
184
+ xavier_uniform_(self.q_proj_weight)
185
+ xavier_uniform_(self.k_proj_weight)
186
+ xavier_uniform_(self.v_proj_weight)
187
+
188
+ if self.in_proj_bias is not None:
189
+ constant_(self.in_proj_bias, 0.0)
190
+ constant_(self.out_proj.bias, 0.0)
191
+
192
+ if self.bias_k is not None:
193
+ xavier_normal_(self.bias_k)
194
+ if self.bias_v is not None:
195
+ xavier_normal_(self.bias_v)
196
+
197
+ def __setstate__(self, state):
198
+ # Support loading old MultiheadAttention checkpoints generated by v1.1.0
199
+ if "_qkv_same_embed_dim" not in state:
200
+ state["_qkv_same_embed_dim"] = True
201
+
202
+ super(MultiheadAttention, self).__setstate__(state)
203
+
204
+ def forward(
205
+ self,
206
+ query: Tensor,
207
+ key: Tensor,
208
+ value: Tensor,
209
+ key_padding_mask: Optional[Tensor] = None,
210
+ need_weights: bool = True,
211
+ attn_mask: Optional[Tensor] = None,
212
+ average_attn_weights: bool = True,
213
+ cache=None,
214
+ ) -> Tuple[Tensor, Optional[Tensor]]:
215
+ r"""
216
+ Args:
217
+ query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
218
+ or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
219
+ :math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
220
+ Queries are compared against key-value pairs to produce the output.
221
+ See "Attention Is All You Need" for more details.
222
+ key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
223
+ or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
224
+ :math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
225
+ See "Attention Is All You Need" for more details.
226
+ value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
227
+ ``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
228
+ sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
229
+ See "Attention Is All You Need" for more details.
230
+ key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
231
+ to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
232
+ Binary and byte masks are supported.
233
+ For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
234
+ the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
235
+ need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
236
+ Default: ``True``.
237
+ attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
238
+ :math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
239
+ :math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
240
+ broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
241
+ Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
242
+ corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
243
+ corresponding position is not allowed to attend. For a float mask, the mask values will be added to
244
+ the attention weight.
245
+ average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
246
+ heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
247
+ effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
248
+
249
+ Outputs:
250
+ - **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
251
+ :math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
252
+ where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
253
+ embedding dimension ``embed_dim``.
254
+ - **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
255
+ returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
256
+ :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
257
+ :math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
258
+ head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
259
+
260
+ .. note::
261
+ `batch_first` argument is ignored for unbatched inputs.
262
+ """
263
+ is_batched = query.dim() == 3
264
+ if key_padding_mask is not None:
265
+ _kpm_dtype = key_padding_mask.dtype
266
+ if _kpm_dtype != torch.bool and not torch.is_floating_point(
267
+ key_padding_mask,
268
+ ):
269
+ raise AssertionError("only bool and floating types of key_padding_mask are supported")
270
+ why_not_fast_path = ""
271
+ if not is_batched:
272
+ why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
273
+ elif query is not key or key is not value:
274
+ # When lifting this restriction, don't forget to either
275
+ # enforce that the dtypes all match or test cases where
276
+ # they don't!
277
+ why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
278
+ elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
279
+ why_not_fast_path = (
280
+ f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
281
+ )
282
+ elif self.in_proj_weight is not None and query.dtype != self.in_proj_weight.dtype:
283
+ # this case will fail anyway, but at least they'll get a useful error message.
284
+ why_not_fast_path = (
285
+ f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
286
+ )
287
+ elif self.training:
288
+ why_not_fast_path = "training is enabled"
289
+ elif not self.batch_first:
290
+ why_not_fast_path = "batch_first was not True"
291
+ elif self.bias_k is not None:
292
+ why_not_fast_path = "self.bias_k was not None"
293
+ elif self.bias_v is not None:
294
+ why_not_fast_path = "self.bias_v was not None"
295
+ elif self.dropout:
296
+ why_not_fast_path = f"dropout was {self.dropout}, required zero"
297
+ elif self.add_zero_attn:
298
+ why_not_fast_path = "add_zero_attn was enabled"
299
+ elif not self._qkv_same_embed_dim:
300
+ why_not_fast_path = "_qkv_same_embed_dim was not True"
301
+ elif attn_mask is not None:
302
+ why_not_fast_path = "attn_mask was not None"
303
+ elif query.is_nested and key_padding_mask is not None:
304
+ why_not_fast_path = "key_padding_mask is not supported with NestedTensor input"
305
+ elif self.num_heads % 2 == 1:
306
+ why_not_fast_path = "num_heads is odd"
307
+ elif torch.is_autocast_enabled():
308
+ why_not_fast_path = "autocast is enabled"
309
+
310
+ if not why_not_fast_path:
311
+ tensor_args = (
312
+ query,
313
+ key,
314
+ value,
315
+ self.in_proj_weight,
316
+ self.in_proj_bias,
317
+ self.out_proj.weight,
318
+ self.out_proj.bias,
319
+ )
320
+ # We have to use list comprehensions below because TorchScript does not support
321
+ # generator expressions.
322
+ if torch.overrides.has_torch_function(tensor_args):
323
+ why_not_fast_path = "some Tensor argument has_torch_function"
324
+ elif not all([(x is None or x.is_cuda or "cpu" in str(x.device)) for x in tensor_args]):
325
+ why_not_fast_path = "some Tensor argument is neither CUDA nor CPU"
326
+ elif torch.is_grad_enabled() and any([x is not None and x.requires_grad for x in tensor_args]):
327
+ why_not_fast_path = "grad is enabled and at least one of query or the input/output projection weights or biases requires_grad"
328
+ if not why_not_fast_path:
329
+ return torch._native_multi_head_attention(
330
+ query,
331
+ key,
332
+ value,
333
+ self.embed_dim,
334
+ self.num_heads,
335
+ self.in_proj_weight,
336
+ self.in_proj_bias,
337
+ self.out_proj.weight,
338
+ self.out_proj.bias,
339
+ key_padding_mask if key_padding_mask is not None else attn_mask,
340
+ need_weights,
341
+ average_attn_weights,
342
+ 1 if key_padding_mask is not None else 0 if attn_mask is not None else None,
343
+ )
344
+
345
+ any_nested = query.is_nested or key.is_nested or value.is_nested
346
+ assert not any_nested, (
347
+ "MultiheadAttention does not support NestedTensor outside of its fast path. "
348
+ + f"The fast path was not hit because {why_not_fast_path}"
349
+ )
350
+
351
+ if self.batch_first and is_batched:
352
+ # make sure that the transpose op does not affect the "is" property
353
+ if key is value:
354
+ if query is key:
355
+ query = key = value = query.transpose(1, 0)
356
+ else:
357
+ query, key = [x.transpose(1, 0) for x in (query, key)]
358
+ value = key
359
+ else:
360
+ query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
361
+
362
+ if not self._qkv_same_embed_dim:
363
+ attn_output, attn_output_weights = F.multi_head_attention_forward(
364
+ query,
365
+ key,
366
+ value,
367
+ self.embed_dim,
368
+ self.num_heads,
369
+ self.in_proj_weight,
370
+ self.in_proj_bias,
371
+ self.bias_k,
372
+ self.bias_v,
373
+ self.add_zero_attn,
374
+ self.dropout,
375
+ self.out_proj.weight,
376
+ self.out_proj.bias,
377
+ training=self.training,
378
+ key_padding_mask=key_padding_mask,
379
+ need_weights=need_weights,
380
+ attn_mask=attn_mask,
381
+ use_separate_proj_weight=True,
382
+ q_proj_weight=self.q_proj_weight,
383
+ k_proj_weight=self.k_proj_weight,
384
+ v_proj_weight=self.v_proj_weight,
385
+ average_attn_weights=average_attn_weights,
386
+ cache=cache,
387
+ )
388
+ else:
389
+ attn_output, attn_output_weights = F.multi_head_attention_forward(
390
+ query,
391
+ key,
392
+ value,
393
+ self.embed_dim,
394
+ self.num_heads,
395
+ self.in_proj_weight,
396
+ self.in_proj_bias,
397
+ self.bias_k,
398
+ self.bias_v,
399
+ self.add_zero_attn,
400
+ self.dropout,
401
+ self.out_proj.weight,
402
+ self.out_proj.bias,
403
+ training=self.training,
404
+ key_padding_mask=key_padding_mask,
405
+ need_weights=need_weights,
406
+ attn_mask=attn_mask,
407
+ average_attn_weights=average_attn_weights,
408
+ cache=cache,
409
+ )
410
+ if self.batch_first and is_batched:
411
+ return attn_output.transpose(1, 0), attn_output_weights
412
+ else:
413
+ return attn_output, attn_output_weights
GPT_SoVITS/AR/modules/activation_onnx.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
2
+ from typing import Optional, Tuple
3
+
4
+ import torch
5
+ from torch import Tensor
6
+ from torch.nn import Linear, Module
7
+ from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
8
+ from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
9
+ from torch.nn.parameter import Parameter
10
+
11
+ from AR.modules.patched_mha_with_cache_onnx import multi_head_attention_forward_patched
12
+
13
+
14
+ class MultiheadAttention(Module):
15
+ __constants__ = ["batch_first"]
16
+ bias_k: Optional[torch.Tensor]
17
+ bias_v: Optional[torch.Tensor]
18
+
19
+ def __init__(
20
+ self,
21
+ embed_dim,
22
+ num_heads,
23
+ dropout=0.0,
24
+ bias=True,
25
+ add_bias_kv=False,
26
+ add_zero_attn=False,
27
+ kdim=None,
28
+ vdim=None,
29
+ batch_first=False,
30
+ linear1_cls=Linear,
31
+ linear2_cls=Linear,
32
+ device=None,
33
+ dtype=None,
34
+ ) -> None:
35
+ factory_kwargs = {"device": device, "dtype": dtype}
36
+ super(MultiheadAttention, self).__init__()
37
+ self.embed_dim = embed_dim
38
+ self.kdim = kdim if kdim is not None else embed_dim
39
+ self.vdim = vdim if vdim is not None else embed_dim
40
+ self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
41
+
42
+ self.num_heads = num_heads
43
+ self.dropout = dropout
44
+ self.batch_first = batch_first
45
+ self.head_dim = embed_dim // num_heads
46
+ assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
47
+
48
+ if add_bias_kv:
49
+ self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
50
+ self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
51
+ else:
52
+ self.bias_k = self.bias_v = None
53
+
54
+ if linear1_cls == Linear:
55
+ if not self._qkv_same_embed_dim:
56
+ self.q_proj_weight = Parameter(
57
+ torch.empty(
58
+ (embed_dim, embed_dim),
59
+ **factory_kwargs,
60
+ )
61
+ )
62
+ self.k_proj_weight = Parameter(
63
+ torch.empty(
64
+ (embed_dim, self.kdim),
65
+ **factory_kwargs,
66
+ )
67
+ )
68
+ self.v_proj_weight = Parameter(
69
+ torch.empty(
70
+ (embed_dim, self.vdim),
71
+ **factory_kwargs,
72
+ )
73
+ )
74
+ self.register_parameter("in_proj_weight", None)
75
+ else:
76
+ self.in_proj_weight = Parameter(
77
+ torch.empty(
78
+ (3 * embed_dim, embed_dim),
79
+ **factory_kwargs,
80
+ )
81
+ )
82
+ self.register_parameter("q_proj_weight", None)
83
+ self.register_parameter("k_proj_weight", None)
84
+ self.register_parameter("v_proj_weight", None)
85
+
86
+ if bias:
87
+ self.in_proj_bias = Parameter(
88
+ torch.empty(3 * embed_dim, **factory_kwargs),
89
+ )
90
+ else:
91
+ self.register_parameter("in_proj_bias", None)
92
+ self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
93
+
94
+ self._reset_parameters()
95
+ else:
96
+ if not self._qkv_same_embed_dim:
97
+ raise NotImplementedError
98
+ else:
99
+ self.in_proj_linear = linear1_cls(
100
+ embed_dim,
101
+ 3 * embed_dim,
102
+ bias=bias,
103
+ **factory_kwargs,
104
+ )
105
+ self.in_proj_weight = self.in_proj_linear.weight
106
+
107
+ self.register_parameter("q_proj_weight", None)
108
+ self.register_parameter("k_proj_weight", None)
109
+ self.register_parameter("v_proj_weight", None)
110
+
111
+ if bias:
112
+ self.in_proj_bias = self.in_proj_linear.bias
113
+ else:
114
+ self.register_parameter("in_proj_bias", None)
115
+
116
+ self.out_proj = linear2_cls(
117
+ embed_dim,
118
+ embed_dim,
119
+ bias=bias,
120
+ **factory_kwargs,
121
+ )
122
+
123
+ if self.bias_k is not None:
124
+ xavier_normal_(self.bias_k)
125
+ if self.bias_v is not None:
126
+ xavier_normal_(self.bias_v)
127
+
128
+ self.add_zero_attn = add_zero_attn
129
+
130
+ def _reset_parameters(self):
131
+ if self._qkv_same_embed_dim:
132
+ xavier_uniform_(self.in_proj_weight)
133
+ else:
134
+ xavier_uniform_(self.q_proj_weight)
135
+ xavier_uniform_(self.k_proj_weight)
136
+ xavier_uniform_(self.v_proj_weight)
137
+
138
+ if self.in_proj_bias is not None:
139
+ constant_(self.in_proj_bias, 0.0)
140
+ constant_(self.out_proj.bias, 0.0)
141
+
142
+ if self.bias_k is not None:
143
+ xavier_normal_(self.bias_k)
144
+ if self.bias_v is not None:
145
+ xavier_normal_(self.bias_v)
146
+
147
+ def __setstate__(self, state):
148
+ # Support loading old MultiheadAttention checkpoints generated by v1.1.0
149
+ if "_qkv_same_embed_dim" not in state:
150
+ state["_qkv_same_embed_dim"] = True
151
+
152
+ super(MultiheadAttention, self).__setstate__(state)
153
+
154
+ def forward(
155
+ self,
156
+ query: Tensor,
157
+ key: Tensor,
158
+ value: Tensor,
159
+ key_padding_mask: Optional[Tensor] = None,
160
+ need_weights: bool = True,
161
+ attn_mask: Optional[Tensor] = None,
162
+ average_attn_weights: bool = True,
163
+ cache=None,
164
+ ) -> Tuple[Tensor, Optional[Tensor]]:
165
+ any_nested = query.is_nested or key.is_nested or value.is_nested
166
+ query = key = value = query.transpose(1, 0)
167
+ attn_output = multi_head_attention_forward_patched(
168
+ query,
169
+ key,
170
+ value,
171
+ self.embed_dim,
172
+ self.num_heads,
173
+ self.in_proj_weight,
174
+ self.in_proj_bias,
175
+ self.bias_k,
176
+ self.bias_v,
177
+ self.add_zero_attn,
178
+ self.dropout,
179
+ self.out_proj.weight,
180
+ self.out_proj.bias,
181
+ training=self.training,
182
+ key_padding_mask=key_padding_mask,
183
+ need_weights=need_weights,
184
+ attn_mask=attn_mask,
185
+ average_attn_weights=average_attn_weights,
186
+ cache=cache,
187
+ )
188
+ return attn_output.transpose(1, 0)
GPT_SoVITS/AR/modules/embedding.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
2
+ import math
3
+
4
+ import torch
5
+ from torch import nn
6
+
7
+
8
+ class TokenEmbedding(nn.Module):
9
+ def __init__(
10
+ self,
11
+ embedding_dim: int,
12
+ vocab_size: int,
13
+ dropout: float = 0.0,
14
+ ):
15
+ super().__init__()
16
+
17
+ self.vocab_size = vocab_size
18
+ self.embedding_dim = embedding_dim
19
+
20
+ self.dropout = torch.nn.Dropout(p=dropout)
21
+ self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
22
+
23
+ @property
24
+ def weight(self) -> torch.Tensor:
25
+ return self.word_embeddings.weight
26
+
27
+ def embedding(self, index: int) -> torch.Tensor:
28
+ return self.word_embeddings.weight[index : index + 1]
29
+
30
+ def forward(self, x: torch.Tensor):
31
+ x = self.word_embeddings(x)
32
+ x = self.dropout(x)
33
+ return x
34
+
35
+
36
+ class SinePositionalEmbedding(nn.Module):
37
+ def __init__(
38
+ self,
39
+ embedding_dim: int,
40
+ dropout: float = 0.0,
41
+ scale: bool = False,
42
+ alpha: bool = False,
43
+ ):
44
+ super().__init__()
45
+ self.embedding_dim = embedding_dim
46
+ self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
47
+ self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
48
+ self.dropout = torch.nn.Dropout(p=dropout)
49
+
50
+ self.reverse = False
51
+ self.pe = None
52
+ self.extend_pe(torch.tensor(0.0).expand(1, 4000))
53
+
54
+ def extend_pe(self, x):
55
+ """Reset the positional encodings."""
56
+ if self.pe is not None:
57
+ if self.pe.size(1) >= x.size(1):
58
+ if self.pe.dtype != x.dtype or self.pe.device != x.device:
59
+ self.pe = self.pe.to(dtype=x.dtype, device=x.device)
60
+ return
61
+ pe = torch.zeros(x.size(1), self.embedding_dim)
62
+ if self.reverse:
63
+ position = torch.arange(x.size(1) - 1, -1, -1.0, dtype=torch.float32).unsqueeze(1)
64
+ else:
65
+ position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
66
+ div_term = torch.exp(
67
+ torch.arange(0, self.embedding_dim, 2, dtype=torch.float32) * -(math.log(10000.0) / self.embedding_dim)
68
+ )
69
+ pe[:, 0::2] = torch.sin(position * div_term)
70
+ pe[:, 1::2] = torch.cos(position * div_term)
71
+ pe = pe.unsqueeze(0)
72
+ self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
73
+
74
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
75
+ self.extend_pe(x)
76
+ output = x.unsqueeze(-1) if x.ndim == 2 else x
77
+ output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
78
+ return self.dropout(output)
GPT_SoVITS/AR/modules/embedding_onnx.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
2
+ import math
3
+
4
+ import torch
5
+ from torch import nn
6
+
7
+
8
+ class TokenEmbedding(nn.Module):
9
+ def __init__(
10
+ self,
11
+ embedding_dim: int,
12
+ vocab_size: int,
13
+ dropout: float = 0.0,
14
+ ):
15
+ super().__init__()
16
+
17
+ self.vocab_size = vocab_size
18
+ self.embedding_dim = embedding_dim
19
+
20
+ self.dropout = torch.nn.Dropout(p=dropout)
21
+ self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
22
+
23
+ @property
24
+ def weight(self) -> torch.Tensor:
25
+ return self.word_embeddings.weight
26
+
27
+ def embedding(self, index: int) -> torch.Tensor:
28
+ return self.word_embeddings.weight[index : index + 1]
29
+
30
+ def forward(self, x: torch.Tensor):
31
+ x = self.word_embeddings(x)
32
+ x = self.dropout(x)
33
+ return x
34
+
35
+
36
+ class SinePositionalEmbedding(nn.Module):
37
+ def __init__(
38
+ self,
39
+ embedding_dim: int,
40
+ dropout: float = 0.0,
41
+ scale: bool = False,
42
+ alpha: bool = False,
43
+ ):
44
+ super().__init__()
45
+ self.embedding_dim = embedding_dim
46
+ self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
47
+ self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
48
+ self.dropout = torch.nn.Dropout(p=dropout)
49
+ self.reverse = False
50
+ self.div_term = torch.exp(torch.arange(0, self.embedding_dim, 2) * -(math.log(10000.0) / self.embedding_dim))
51
+
52
+ def extend_pe(self, x):
53
+ position = torch.cumsum(torch.ones_like(x[:, :, 0]), dim=1).transpose(0, 1)
54
+ scpe = (position * self.div_term).unsqueeze(0)
55
+ pe = torch.cat([torch.sin(scpe), torch.cos(scpe)]).permute(1, 2, 0)
56
+ pe = pe.contiguous().view(1, -1, self.embedding_dim)
57
+ return pe
58
+
59
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
60
+ pe = self.extend_pe(x)
61
+ output = x.unsqueeze(-1) if x.ndim == 2 else x
62
+ output = output * self.x_scale + self.alpha * pe
63
+ return self.dropout(output)
GPT_SoVITS/AR/modules/lr_schedulers.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/modules/lr_schedulers.py
2
+ # reference: https://github.com/lifeiteng/vall-e
3
+ import math
4
+
5
+ import torch
6
+ from matplotlib import pyplot as plt
7
+ from torch import nn
8
+ from torch.optim import Adam
9
+
10
+
11
+ class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
12
+ """
13
+ Implements Warmup learning rate schedule until 'warmup_steps', going from 'init_lr' to 'peak_lr' for multiple optimizers.
14
+ """
15
+
16
+ def __init__(
17
+ self,
18
+ optimizer,
19
+ init_lr,
20
+ peak_lr,
21
+ end_lr,
22
+ warmup_steps=10000,
23
+ total_steps=400000,
24
+ current_step=0,
25
+ ):
26
+ self.init_lr = init_lr
27
+ self.peak_lr = peak_lr
28
+ self.end_lr = end_lr
29
+ self.optimizer = optimizer
30
+ self._warmup_rate = (peak_lr - init_lr) / warmup_steps
31
+ self._decay_rate = (end_lr - peak_lr) / (total_steps - warmup_steps)
32
+ self._current_step = current_step
33
+ self.lr = init_lr
34
+ self.warmup_steps = warmup_steps
35
+ self.total_steps = total_steps
36
+ self._last_lr = [self.lr]
37
+
38
+ def set_lr(self, lr):
39
+ self._last_lr = [g["lr"] for g in self.optimizer.param_groups]
40
+ for g in self.optimizer.param_groups:
41
+ # g['lr'] = lr
42
+ g["lr"] = self.end_lr ###锁定用线性
43
+
44
+ def step(self):
45
+ if self._current_step < self.warmup_steps:
46
+ lr = self.init_lr + self._warmup_rate * self._current_step
47
+
48
+ elif self._current_step > self.total_steps:
49
+ lr = self.end_lr
50
+
51
+ else:
52
+ decay_ratio = (self._current_step - self.warmup_steps) / (self.total_steps - self.warmup_steps)
53
+ if decay_ratio < 0.0 or decay_ratio > 1.0:
54
+ raise RuntimeError("Decay ratio must be in [0.0, 1.0]. Fix LR scheduler settings.")
55
+ coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
56
+ lr = self.end_lr + coeff * (self.peak_lr - self.end_lr)
57
+
58
+ self.lr = lr = self.end_lr = 0.002 ###锁定用线性###不听话,直接锁定!
59
+ self.set_lr(lr)
60
+ self.lr = lr
61
+ self._current_step += 1
62
+ return self.lr
63
+
64
+
65
+ if __name__ == "__main__":
66
+ m = nn.Linear(10, 10)
67
+ opt = Adam(m.parameters(), lr=1e-4)
68
+ s = WarmupCosineLRSchedule(
69
+ opt,
70
+ 1e-6,
71
+ 2e-4,
72
+ 1e-6,
73
+ warmup_steps=2000,
74
+ total_steps=20000,
75
+ current_step=0,
76
+ )
77
+ lrs = []
78
+ for i in range(25000):
79
+ s.step()
80
+ lrs.append(s.lr)
81
+ print(s.lr)
82
+
83
+ plt.plot(lrs)
84
+ plt.plot(range(0, 25000), lrs)
85
+ plt.show()
GPT_SoVITS/AR/modules/optim.py ADDED
@@ -0,0 +1,593 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
2
+ #
3
+ # See ../LICENSE for clarification regarding multiple authors
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ import contextlib
17
+ import logging
18
+ from collections import defaultdict
19
+ from typing import List, Tuple
20
+
21
+ import torch
22
+ from torch import Tensor
23
+ from torch.optim import Optimizer
24
+
25
+
26
+ class BatchedOptimizer(Optimizer):
27
+ """
28
+ This class adds to class Optimizer the capability to optimize parameters in batches:
29
+ it will stack the parameters and their grads for you so the optimizer can work
30
+ on tensors with an extra leading dimension. This is intended for speed with GPUs,
31
+ as it reduces the number of kernels launched in the optimizer.
32
+
33
+ Args:
34
+ params:
35
+ """
36
+
37
+ def __init__(self, params, defaults):
38
+ super(BatchedOptimizer, self).__init__(params, defaults)
39
+
40
+ @contextlib.contextmanager
41
+ def batched_params(self, param_group, group_params_names):
42
+ """
43
+ This function returns (technically, yields) a list of
44
+ of tuples (p, state), where
45
+ p is a `fake` parameter that is stacked (over axis 0) from real parameters
46
+ that share the same shape, and its gradient is also stacked;
47
+ `state` is the state corresponding to this batch of parameters
48
+ (it will be physically located in the "state" for one of the real
49
+ parameters, the last one that has any particular shape and dtype).
50
+
51
+ This function is decorated as a context manager so that it can
52
+ write parameters back to their "real" locations.
53
+
54
+ The idea is, instead of doing:
55
+ <code>
56
+ for p in group["params"]:
57
+ state = self.state[p]
58
+ ...
59
+ </code>
60
+ you can do:
61
+ <code>
62
+ with self.batched_params(group["params"]) as batches:
63
+ for p, state, p_names in batches:
64
+ ...
65
+ </code>
66
+
67
+ Args:
68
+ group: a parameter group, which is a list of parameters; should be
69
+ one of self.param_groups.
70
+ group_params_names: name for each parameter in group,
71
+ which is List[str].
72
+ """
73
+ batches = defaultdict(list) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter
74
+ batches_names = defaultdict(list) # `batches` maps from tuple (dtype_as_str,*shape) to list of str
75
+
76
+ assert len(param_group) == len(group_params_names)
77
+ for p, named_p in zip(param_group, group_params_names):
78
+ key = (str(p.dtype), *p.shape)
79
+ batches[key].append(p)
80
+ batches_names[key].append(named_p)
81
+
82
+ batches_names_keys = list(batches_names.keys())
83
+ sorted_idx = sorted(range(len(batches_names)), key=lambda i: batches_names_keys[i])
84
+ batches_names = [batches_names[batches_names_keys[idx]] for idx in sorted_idx]
85
+ batches = [batches[batches_names_keys[idx]] for idx in sorted_idx]
86
+
87
+ stacked_params_dict = dict()
88
+
89
+ # turn batches into a list, in deterministic order.
90
+ # tuples will contain tuples of (stacked_param, state, stacked_params_names),
91
+ # one for each batch in `batches`.
92
+ tuples = []
93
+
94
+ for batch, batch_names in zip(batches, batches_names):
95
+ p = batch[0]
96
+ # we arbitrarily store the state in the
97
+ # state corresponding to the 1st parameter in the
98
+ # group. class Optimizer will take care of saving/loading state.
99
+ state = self.state[p]
100
+ p_stacked = torch.stack(batch)
101
+ grad = torch.stack([torch.zeros_like(p) if p.grad is None else p.grad for p in batch])
102
+ p_stacked.grad = grad
103
+ stacked_params_dict[key] = p_stacked
104
+ tuples.append((p_stacked, state, batch_names))
105
+
106
+ yield tuples # <-- calling code will do the actual optimization here!
107
+
108
+ for (stacked_params, _state, _names), batch in zip(tuples, batches):
109
+ for i, p in enumerate(batch): # batch is list of Parameter
110
+ p.copy_(stacked_params[i])
111
+
112
+
113
+ class ScaledAdam(BatchedOptimizer):
114
+ """
115
+ Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
116
+ proportional to the norm of that parameter; and also learn the scale of the parameter,
117
+ in log space, subject to upper and lower limits (as if we had factored each parameter as
118
+ param = underlying_param * log_scale.exp())
119
+
120
+
121
+ Args:
122
+ params: The parameters or param_groups to optimize (like other Optimizer subclasses)
123
+ lr: The learning rate. We will typically use a learning rate schedule that starts
124
+ at 0.03 and decreases over time, i.e. much higher than other common
125
+ optimizers.
126
+ clipping_scale: (e.g. 2.0)
127
+ A scale for gradient-clipping: if specified, the normalized gradients
128
+ over the whole model will be clipped to have 2-norm equal to
129
+ `clipping_scale` times the median 2-norm over the most recent period
130
+ of `clipping_update_period` minibatches. By "normalized gradients",
131
+ we mean after multiplying by the rms parameter value for this tensor
132
+ [for non-scalars]; this is appropriate because our update is scaled
133
+ by this quantity.
134
+ betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
135
+ Must satisfy 0 < beta <= beta2 < 1.
136
+ scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
137
+ scale of each parameter tensor and scalar parameters of the mode..
138
+ If each parameter were decomposed
139
+ as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
140
+ would be a the scaling factor on the learning rate of p_scale.
141
+ eps: A general-purpose epsilon to prevent division by zero
142
+ param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
143
+ learning the scale on the parameters (we'll constrain the rms of each non-scalar
144
+ parameter tensor to be >= this value)
145
+ param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
146
+ learning the scale on the parameters (we'll constrain the rms of each non-scalar
147
+ parameter tensor to be <= this value)
148
+ scalar_max: Maximum absolute value for scalar parameters (applicable if your
149
+ model has any parameters with numel() == 1).
150
+ size_update_period: The periodicity, in steps, with which we update the size (scale)
151
+ of the parameter tensor. This is provided to save a little time
152
+ in the update.
153
+ clipping_update_period: if clipping_scale is specified, this is the period
154
+ """
155
+
156
+ def __init__(
157
+ self,
158
+ params,
159
+ lr=3e-02,
160
+ clipping_scale=None,
161
+ betas=(0.9, 0.98),
162
+ scalar_lr_scale=0.1,
163
+ eps=1.0e-08,
164
+ param_min_rms=1.0e-05,
165
+ param_max_rms=3.0,
166
+ scalar_max=10.0,
167
+ size_update_period=4,
168
+ clipping_update_period=100,
169
+ parameters_names=None,
170
+ show_dominant_parameters=True,
171
+ ):
172
+ assert parameters_names is not None, (
173
+ "Please prepare parameters_names,which is a List[List[str]]. Each List[str] is for a groupand each str is for a parameter"
174
+ )
175
+ defaults = dict(
176
+ lr=lr,
177
+ clipping_scale=clipping_scale,
178
+ betas=betas,
179
+ scalar_lr_scale=scalar_lr_scale,
180
+ eps=eps,
181
+ param_min_rms=param_min_rms,
182
+ param_max_rms=param_max_rms,
183
+ scalar_max=scalar_max,
184
+ size_update_period=size_update_period,
185
+ clipping_update_period=clipping_update_period,
186
+ )
187
+
188
+ super(ScaledAdam, self).__init__(params, defaults)
189
+ assert len(self.param_groups) == len(parameters_names)
190
+ self.parameters_names = parameters_names
191
+ self.show_dominant_parameters = show_dominant_parameters
192
+
193
+ def __setstate__(self, state):
194
+ super(ScaledAdam, self).__setstate__(state)
195
+
196
+ @torch.no_grad()
197
+ def step(self, closure=None):
198
+ """Performs a single optimization step.
199
+
200
+ Arguments:
201
+ closure (callable, optional): A closure that reevaluates the model
202
+ and returns the loss.
203
+ """
204
+ loss = None
205
+ if closure is not None:
206
+ with torch.enable_grad():
207
+ loss = closure()
208
+
209
+ batch = True
210
+
211
+ for group, group_params_names in zip(self.param_groups, self.parameters_names):
212
+ with self.batched_params(group["params"], group_params_names) as batches:
213
+ # batches is list of pairs (stacked_param, state). stacked_param is like
214
+ # a regular parameter, and will have a .grad, but the 1st dim corresponds to
215
+ # a stacking dim, it is not a real dim.
216
+
217
+ if len(batches[0][1]) == 0: # if len(first state) == 0: not yet initialized
218
+ clipping_scale = 1
219
+ else:
220
+ clipping_scale = self._get_clipping_scale(group, batches)
221
+
222
+ for p, state, _ in batches:
223
+ # Perform optimization step.
224
+ # grad is not going to be None, we handled that when creating the batches.
225
+ grad = p.grad
226
+ if grad.is_sparse:
227
+ raise RuntimeError("ScaledAdam optimizer does not support sparse gradients")
228
+ # State initialization
229
+ if len(state) == 0:
230
+ self._init_state(group, p, state)
231
+
232
+ self._step_one_batch(group, p, state, clipping_scale)
233
+
234
+ return loss
235
+
236
+ def _init_state(self, group: dict, p: Tensor, state: dict):
237
+ """
238
+ Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p
239
+ is actually the batch dimension, corresponding to batched-together
240
+ parameters of a given shape.
241
+
242
+
243
+ Args:
244
+ group: Dict to look up configuration values.
245
+ p: The parameter that we are initializing the state for
246
+ state: Dict from string to whatever state we are initializing
247
+ """
248
+ size_update_period = group["size_update_period"]
249
+
250
+ state["step"] = 0
251
+
252
+ kwargs = {"device": p.device, "dtype": p.dtype}
253
+
254
+ # 'delta' implements conventional momentum. There are
255
+ # several different kinds of update going on, so rather than
256
+ # compute "exp_avg" like in Adam, we store and decay a
257
+ # parameter-change "delta", which combines all forms of
258
+ # update. this is equivalent to how it's done in Adam,
259
+ # except for the first few steps.
260
+ state["delta"] = torch.zeros_like(p, memory_format=torch.preserve_format)
261
+
262
+ batch_size = p.shape[0]
263
+ numel = p.numel() // batch_size
264
+ numel = p.numel()
265
+
266
+ if numel > 1:
267
+ # "param_rms" just periodically records the scalar root-mean-square value of
268
+ # the parameter tensor.
269
+ # it has a shape like (batch_size, 1, 1, 1, 1)
270
+ param_rms = (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt()
271
+ state["param_rms"] = param_rms
272
+
273
+ state["scale_exp_avg_sq"] = torch.zeros_like(param_rms)
274
+ state["scale_grads"] = torch.zeros(size_update_period, *param_rms.shape, **kwargs)
275
+
276
+ # exp_avg_sq is the weighted sum of scaled gradients. as in Adam.
277
+ state["exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format)
278
+
279
+ def _get_clipping_scale(self, group: dict, tuples: List[Tuple[Tensor, dict, List[str]]]) -> float:
280
+ """
281
+ Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
282
+ by this amount before applying the rest of the update.
283
+
284
+ Args:
285
+ group: the parameter group, an item in self.param_groups
286
+ tuples: a list of tuples of (param, state, param_names)
287
+ where param is a batched set of parameters,
288
+ with a .grad (1st dim is batch dim)
289
+ and state is the state-dict where optimization parameters are kept.
290
+ param_names is a List[str] while each str is name for a parameter
291
+ in batched set of parameters "param".
292
+ """
293
+ assert len(tuples) >= 1
294
+ clipping_scale = group["clipping_scale"]
295
+ (first_p, first_state, _) = tuples[0]
296
+ step = first_state["step"]
297
+ if clipping_scale is None or step == 0:
298
+ # no clipping. return early on step == 0 because the other
299
+ # parameters' state won't have been initialized yet.
300
+ return 1.0
301
+ clipping_update_period = group["clipping_update_period"]
302
+
303
+ tot_sumsq = torch.tensor(0.0, device=first_p.device)
304
+ for p, state, param_names in tuples:
305
+ grad = p.grad
306
+ if grad.is_sparse:
307
+ raise RuntimeError("ScaledAdam optimizer does not support sparse gradients")
308
+ if p.numel() == p.shape[0]: # a batch of scalars
309
+ tot_sumsq += (grad**2).sum() # sum() to change shape [1] to []
310
+ else:
311
+ tot_sumsq += ((grad * state["param_rms"]) ** 2).sum()
312
+
313
+ tot_norm = tot_sumsq.sqrt()
314
+ if "model_norms" not in first_state:
315
+ first_state["model_norms"] = torch.zeros(clipping_update_period, device=p.device)
316
+ first_state["model_norms"][step % clipping_update_period] = tot_norm
317
+
318
+ if step % clipping_update_period == 0:
319
+ # Print some stats.
320
+ # We don't reach here if step == 0 because we would have returned
321
+ # above.
322
+ sorted_norms = first_state["model_norms"].sort()[0].to("cpu")
323
+ quartiles = []
324
+ for n in range(0, 5):
325
+ index = min(
326
+ clipping_update_period - 1,
327
+ (clipping_update_period // 4) * n,
328
+ )
329
+ quartiles.append(sorted_norms[index].item())
330
+
331
+ median = quartiles[2]
332
+ threshold = clipping_scale * median
333
+ first_state["model_norm_threshold"] = threshold
334
+ percent_clipped = (
335
+ first_state["num_clipped"] * 100.0 / clipping_update_period if "num_clipped" in first_state else 0.0
336
+ )
337
+ first_state["num_clipped"] = 0
338
+ quartiles = " ".join(["%.3e" % x for x in quartiles])
339
+ logging.info(
340
+ f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}"
341
+ )
342
+
343
+ if step < clipping_update_period:
344
+ return 1.0 # We have not yet estimated a norm to clip to.
345
+ else:
346
+ try:
347
+ model_norm_threshold = first_state["model_norm_threshold"]
348
+ except KeyError:
349
+ logging.info(
350
+ "Warning: model_norm_threshold not in state: possibly you changed config when restarting, adding clipping_scale option?"
351
+ )
352
+ return 1.0
353
+ ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item())
354
+ if ans < 1.0:
355
+ first_state["num_clipped"] += 1
356
+ if ans < 0.1:
357
+ logging.warn(f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}")
358
+ if self.show_dominant_parameters:
359
+ assert p.shape[0] == len(param_names)
360
+ self._show_gradient_dominating_parameter(tuples, tot_sumsq)
361
+ return ans
362
+
363
+ def _show_gradient_dominating_parameter(self, tuples: List[Tuple[Tensor, dict, List[str]]], tot_sumsq: Tensor):
364
+ """
365
+ Show information of parameter wihch dominanting tot_sumsq.
366
+
367
+ Args:
368
+ tuples: a list of tuples of (param, state, param_names)
369
+ where param is a batched set of parameters,
370
+ with a .grad (1st dim is batch dim)
371
+ and state is the state-dict where optimization parameters are kept.
372
+ param_names is a List[str] while each str is name for a parameter
373
+ in batched set of parameters "param".
374
+ tot_sumsq: sumsq of all parameters. Though it's could be calculated
375
+ from tuples, we still pass it to save some time.
376
+ """
377
+ all_sumsq_orig = {}
378
+ for p, state, batch_param_names in tuples:
379
+ # p is a stacked batch parameters.
380
+ batch_grad = p.grad
381
+ if p.numel() == p.shape[0]: # a batch of scalars
382
+ batch_sumsq_orig = batch_grad**2
383
+ # Dummpy values used by following `zip` statement.
384
+ batch_rms_orig = torch.ones(p.shape[0])
385
+ else:
386
+ batch_rms_orig = state["param_rms"]
387
+ batch_sumsq_orig = ((batch_grad * batch_rms_orig) ** 2).sum(dim=list(range(1, batch_grad.ndim)))
388
+
389
+ for name, sumsq_orig, rms, grad in zip(
390
+ batch_param_names,
391
+ batch_sumsq_orig,
392
+ batch_rms_orig,
393
+ batch_grad,
394
+ ):
395
+ proportion_orig = sumsq_orig / tot_sumsq
396
+ all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
397
+
398
+ assert torch.isclose(
399
+ sum([value[0] for value in all_sumsq_orig.values()]).cpu(),
400
+ torch.tensor(1.0),
401
+ )
402
+ sorted_by_proportion = {
403
+ k: v
404
+ for k, v in sorted(
405
+ all_sumsq_orig.items(),
406
+ key=lambda item: item[1][0],
407
+ reverse=True,
408
+ )
409
+ }
410
+ dominant_param_name = next(iter(sorted_by_proportion))
411
+ (
412
+ dominant_proportion,
413
+ dominant_sumsq,
414
+ dominant_rms,
415
+ dominant_grad,
416
+ ) = sorted_by_proportion[dominant_param_name]
417
+ logging.info(
418
+ f"Parameter Dominanting tot_sumsq {dominant_param_name}"
419
+ f" with proportion {dominant_proportion:.2f},"
420
+ f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)"
421
+ f"={dominant_sumsq:.3e},"
422
+ f" grad_sumsq = {(dominant_grad**2).sum():.3e},"
423
+ f" orig_rms_sq={(dominant_rms**2).item():.3e}"
424
+ )
425
+
426
+ def _step_one_batch(self, group: dict, p: Tensor, state: dict, clipping_scale: float):
427
+ """
428
+ Do the step for one parameter, which is actually going to be a batch of
429
+ `real` parameters, with dim 0 as the batch dim.
430
+ Args:
431
+ group: dict to look up configuration values
432
+ p: parameter to update (actually multiple parameters stacked together
433
+ as a batch)
434
+ state: state-dict for p, to look up the optimizer state
435
+ """
436
+ lr = group["lr"]
437
+ size_update_period = group["size_update_period"]
438
+ beta1 = group["betas"][0]
439
+
440
+ grad = p.grad
441
+ if clipping_scale != 1.0:
442
+ grad = grad * clipping_scale
443
+ step = state["step"]
444
+ delta = state["delta"]
445
+
446
+ delta.mul_(beta1)
447
+ batch_size = p.shape[0]
448
+ numel = p.numel() // batch_size
449
+ if numel > 1:
450
+ # Update the size/scale of p, and set param_rms
451
+ scale_grads = state["scale_grads"]
452
+ scale_grads[step % size_update_period] = (p * grad).sum(dim=list(range(1, p.ndim)), keepdim=True)
453
+ if step % size_update_period == size_update_period - 1:
454
+ param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..)
455
+ param_rms.copy_((p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt())
456
+ if step > 0:
457
+ # self._size_update() learns the overall scale on the
458
+ # parameter, by shrinking or expanding it.
459
+ self._size_update(group, scale_grads, p, state)
460
+
461
+ if numel == 1:
462
+ # For parameters with 1 element we just use regular Adam.
463
+ # Updates delta.
464
+ self._step_scalar(group, p, state)
465
+ else:
466
+ self._step(group, p, state)
467
+
468
+ state["step"] = step + 1
469
+
470
+ def _size_update(
471
+ self,
472
+ group: dict,
473
+ scale_grads: Tensor,
474
+ p: Tensor,
475
+ state: dict,
476
+ ) -> None:
477
+ """
478
+ Called only where p.numel() > 1, this updates the scale of the parameter.
479
+ If we imagine: p = underlying_param * scale.exp(), and we are doing
480
+ gradient descent on underlying param and on scale, this function does the update
481
+ on `scale`.
482
+
483
+ Args:
484
+ group: dict to look up configuration values
485
+ scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing
486
+ grads w.r.t. the scales.
487
+ p: The parameter to update
488
+ state: The state-dict of p
489
+ """
490
+
491
+ param_rms = state["param_rms"]
492
+ beta1, beta2 = group["betas"]
493
+ size_lr = group["lr"] * group["scalar_lr_scale"]
494
+ param_min_rms = group["param_min_rms"]
495
+ param_max_rms = group["param_max_rms"]
496
+ eps = group["eps"]
497
+ step = state["step"]
498
+ batch_size = p.shape[0]
499
+
500
+ size_update_period = scale_grads.shape[0]
501
+ # correct beta2 for the size update period: we will have
502
+ # faster decay at this level.
503
+ beta2_corr = beta2**size_update_period
504
+
505
+ scale_exp_avg_sq = state["scale_exp_avg_sq"] # shape: (batch_size, 1, 1, ..)
506
+ scale_exp_avg_sq.mul_(beta2_corr).add_(
507
+ (scale_grads**2).mean(dim=0), # mean over dim `size_update_period`
508
+ alpha=1 - beta2_corr,
509
+ ) # shape is (batch_size, 1, 1, ...)
510
+
511
+ # The 1st time we reach here is when size_step == 1.
512
+ size_step = (step + 1) // size_update_period
513
+ bias_correction2 = 1 - beta2_corr**size_step
514
+ # we don't bother with bias_correction1; this will help prevent divergence
515
+ # at the start of training.
516
+
517
+ denom = scale_exp_avg_sq.sqrt() + eps
518
+
519
+ scale_step = -size_lr * (bias_correction2**0.5) * scale_grads.sum(dim=0) / denom
520
+
521
+ is_too_small = param_rms < param_min_rms
522
+ is_too_large = param_rms > param_max_rms
523
+
524
+ # when the param gets too small, just don't shrink it any further.
525
+ scale_step.masked_fill_(is_too_small, 0.0)
526
+ # when it gets too large, stop it from getting any larger.
527
+ scale_step.masked_fill_(is_too_large, -size_lr * size_update_period)
528
+ delta = state["delta"]
529
+ # the factor of (1-beta1) relates to momentum.
530
+ delta.add_(p * scale_step, alpha=(1 - beta1))
531
+
532
+ def _step(self, group: dict, p: Tensor, state: dict):
533
+ """
534
+ This function does the core update of self.step(), in the case where the members of
535
+ the batch have more than 1 element.
536
+
537
+ Args:
538
+ group: A dict which will be used to look up configuration values
539
+ p: The parameter to be updated
540
+ grad: The grad of p
541
+ state: The state-dict corresponding to parameter p
542
+
543
+ This function modifies p.
544
+ """
545
+ grad = p.grad
546
+ lr = group["lr"]
547
+ beta1, beta2 = group["betas"]
548
+ eps = group["eps"]
549
+ param_min_rms = group["param_min_rms"]
550
+ step = state["step"]
551
+
552
+ exp_avg_sq = state["exp_avg_sq"]
553
+ exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2))
554
+
555
+ this_step = state["step"] - (state["zero_step"] if "zero_step" in state else 0)
556
+ bias_correction2 = 1 - beta2 ** (this_step + 1)
557
+ if bias_correction2 < 0.99:
558
+ # note: not in-place.
559
+ exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2)
560
+
561
+ denom = exp_avg_sq.sqrt()
562
+ denom += eps
563
+ grad = grad / denom
564
+
565
+ alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms)
566
+
567
+ delta = state["delta"]
568
+ delta.add_(grad * alpha)
569
+ p.add_(delta)
570
+
571
+ def _step_scalar(self, group: dict, p: Tensor, state: dict):
572
+ """
573
+ A simplified form of the core update for scalar tensors, where we cannot get a good
574
+ estimate of the parameter rms.
575
+ """
576
+ beta1, beta2 = group["betas"]
577
+ scalar_max = group["scalar_max"]
578
+ eps = group["eps"]
579
+ lr = group["lr"] * group["scalar_lr_scale"]
580
+ grad = p.grad
581
+
582
+ exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,)
583
+ exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
584
+
585
+ # bias_correction2 is like in Adam. Don't bother with bias_correction1;
586
+ # slower update at the start will help stability anyway.
587
+ bias_correction2 = 1 - beta2 ** (state["step"] + 1)
588
+ denom = (exp_avg_sq / bias_correction2).sqrt() + eps
589
+
590
+ delta = state["delta"]
591
+ delta.add_(grad / denom, alpha=-lr * (1 - beta1))
592
+ p.clamp_(min=-scalar_max, max=scalar_max)
593
+ p.add_(delta)
GPT_SoVITS/AR/modules/patched_mha_with_cache.py ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.nn.functional import *
2
+ from torch.nn.functional import (
3
+ _mha_shape_check,
4
+ _canonical_mask,
5
+ _none_or_dtype,
6
+ _in_projection_packed,
7
+ )
8
+ import torch
9
+ # Tensor = torch.Tensor
10
+ # from typing import Callable, List, Optional, Tuple, Union
11
+
12
+
13
+ def multi_head_attention_forward_patched(
14
+ query,
15
+ key,
16
+ value,
17
+ embed_dim_to_check,
18
+ num_heads,
19
+ in_proj_weight,
20
+ in_proj_bias,
21
+ bias_k,
22
+ bias_v,
23
+ add_zero_attn,
24
+ dropout_p: float,
25
+ out_proj_weight,
26
+ out_proj_bias,
27
+ training=True,
28
+ key_padding_mask=None,
29
+ need_weights=True,
30
+ attn_mask=None,
31
+ use_separate_proj_weight=False,
32
+ q_proj_weight=None,
33
+ k_proj_weight=None,
34
+ v_proj_weight=None,
35
+ static_k=None,
36
+ static_v=None,
37
+ average_attn_weights=True,
38
+ is_causal=False,
39
+ cache=None,
40
+ ):
41
+ r"""
42
+ Args:
43
+ query, key, value: map a query and a set of key-value pairs to an output.
44
+ See "Attention Is All You Need" for more details.
45
+ embed_dim_to_check: total dimension of the model.
46
+ num_heads: parallel attention heads.
47
+ in_proj_weight, in_proj_bias: input projection weight and bias.
48
+ bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
49
+ add_zero_attn: add a new batch of zeros to the key and
50
+ value sequences at dim=1.
51
+ dropout_p: probability of an element to be zeroed.
52
+ out_proj_weight, out_proj_bias: the output projection weight and bias.
53
+ training: apply dropout if is ``True``.
54
+ key_padding_mask: if provided, specified padding elements in the key will
55
+ be ignored by the attention. This is an binary mask. When the value is True,
56
+ the corresponding value on the attention layer will be filled with -inf.
57
+ need_weights: output attn_output_weights.
58
+ Default: `True`
59
+ Note: `needs_weight` defaults to `True`, but should be set to `False`
60
+ For best performance when attention weights are not nedeeded.
61
+ *Setting needs_weights to `True`
62
+ leads to a significant performance degradation.*
63
+ attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
64
+ the batches while a 3D mask allows to specify a different mask for the entries of each batch.
65
+ is_causal: If specified, applies a causal mask as attention mask, and ignores
66
+ attn_mask for computing scaled dot product attention.
67
+ Default: ``False``.
68
+ .. warning::
69
+ is_causal is provides a hint that the attn_mask is the
70
+ causal mask.Providing incorrect hints can result in
71
+ incorrect execution, including forward and backward
72
+ compatibility.
73
+ use_separate_proj_weight: the function accept the proj. weights for query, key,
74
+ and value in different forms. If false, in_proj_weight will be used, which is
75
+ a combination of q_proj_weight, k_proj_weight, v_proj_weight.
76
+ q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
77
+ static_k, static_v: static key and value used for attention operators.
78
+ average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
79
+ Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
80
+ when ``need_weights=True.``. Default: True
81
+
82
+
83
+ Shape:
84
+ Inputs:
85
+ - query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
86
+ the embedding dimension.
87
+ - key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
88
+ the embedding dimension.
89
+ - value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
90
+ the embedding dimension.
91
+ - key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
92
+ If a FloatTensor is provided, it will be directly added to the value.
93
+ If a BoolTensor is provided, the positions with the
94
+ value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
95
+ - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
96
+ 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
97
+ S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
98
+ positions. If a BoolTensor is provided, positions with ``True``
99
+ are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
100
+ is provided, it will be added to the attention weight.
101
+ - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
102
+ N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
103
+ - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
104
+ N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
105
+
106
+ Outputs:
107
+ - attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
108
+ E is the embedding dimension.
109
+ - attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
110
+ attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
111
+ :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
112
+ :math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
113
+ head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
114
+ """
115
+ tens_ops = (
116
+ query,
117
+ key,
118
+ value,
119
+ in_proj_weight,
120
+ in_proj_bias,
121
+ bias_k,
122
+ bias_v,
123
+ out_proj_weight,
124
+ out_proj_bias,
125
+ )
126
+ if has_torch_function(tens_ops):
127
+ return handle_torch_function(
128
+ multi_head_attention_forward,
129
+ tens_ops,
130
+ query,
131
+ key,
132
+ value,
133
+ embed_dim_to_check,
134
+ num_heads,
135
+ in_proj_weight,
136
+ in_proj_bias,
137
+ bias_k,
138
+ bias_v,
139
+ add_zero_attn,
140
+ dropout_p,
141
+ out_proj_weight,
142
+ out_proj_bias,
143
+ training=training,
144
+ key_padding_mask=key_padding_mask,
145
+ need_weights=need_weights,
146
+ attn_mask=attn_mask,
147
+ is_causal=is_causal,
148
+ use_separate_proj_weight=use_separate_proj_weight,
149
+ q_proj_weight=q_proj_weight,
150
+ k_proj_weight=k_proj_weight,
151
+ v_proj_weight=v_proj_weight,
152
+ static_k=static_k,
153
+ static_v=static_v,
154
+ average_attn_weights=average_attn_weights,
155
+ cache=cache,
156
+ )
157
+
158
+ is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
159
+
160
+ # For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
161
+ # is batched, run the computation and before returning squeeze the
162
+ # batch dimension so that the output doesn't carry this temporary batch dimension.
163
+ if not is_batched:
164
+ # unsqueeze if the input is unbatched
165
+ query = query.unsqueeze(1)
166
+ key = key.unsqueeze(1)
167
+ value = value.unsqueeze(1)
168
+ if key_padding_mask is not None:
169
+ key_padding_mask = key_padding_mask.unsqueeze(0)
170
+
171
+ # set up shape vars
172
+ tgt_len, bsz, embed_dim = query.shape
173
+ src_len, _, _ = key.shape
174
+
175
+ key_padding_mask = _canonical_mask(
176
+ mask=key_padding_mask,
177
+ mask_name="key_padding_mask",
178
+ other_type=_none_or_dtype(attn_mask),
179
+ other_name="attn_mask",
180
+ target_type=query.dtype,
181
+ )
182
+
183
+ if is_causal and attn_mask is None:
184
+ raise RuntimeError(
185
+ "Need attn_mask if specifying the is_causal hint. "
186
+ "You may use the Transformer module method "
187
+ "`generate_square_subsequent_mask` to create this mask."
188
+ )
189
+
190
+ if is_causal and key_padding_mask is None and not need_weights:
191
+ # when we have a kpm or need weights, we need attn_mask
192
+ # Otherwise, we use the is_causal hint go as is_causal
193
+ # indicator to SDPA.
194
+ attn_mask = None
195
+ else:
196
+ attn_mask = _canonical_mask(
197
+ mask=attn_mask,
198
+ mask_name="attn_mask",
199
+ other_type=None,
200
+ other_name="",
201
+ target_type=query.dtype,
202
+ check_other=False,
203
+ )
204
+
205
+ if key_padding_mask is not None:
206
+ # We have the attn_mask, and use that to merge kpm into it.
207
+ # Turn off use of is_causal hint, as the merged mask is no
208
+ # longer causal.
209
+ is_causal = False
210
+
211
+ assert embed_dim == embed_dim_to_check, (
212
+ f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
213
+ )
214
+ if isinstance(embed_dim, torch.Tensor):
215
+ # embed_dim can be a tensor when JIT tracing
216
+ head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
217
+ else:
218
+ head_dim = embed_dim // num_heads
219
+ assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
220
+ if use_separate_proj_weight:
221
+ # allow MHA to have different embedding dimensions when separate projection weights are used
222
+ assert key.shape[:2] == value.shape[:2], (
223
+ f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
224
+ )
225
+ else:
226
+ assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
227
+
228
+ #
229
+ # compute in-projection
230
+ #
231
+ if not use_separate_proj_weight:
232
+ assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
233
+ q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
234
+ else:
235
+ assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
236
+ assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
237
+ assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
238
+ if in_proj_bias is None:
239
+ b_q = b_k = b_v = None
240
+ else:
241
+ b_q, b_k, b_v = in_proj_bias.chunk(3)
242
+ q, k, v = _in_projection(
243
+ query,
244
+ key,
245
+ value,
246
+ q_proj_weight,
247
+ k_proj_weight,
248
+ v_proj_weight,
249
+ b_q,
250
+ b_k,
251
+ b_v,
252
+ )
253
+ if cache != None:
254
+ if cache["first_infer"] == 1:
255
+ cache["k"][cache["stage"]] = k
256
+ # print(0,cache["k"].shape)
257
+ cache["v"][cache["stage"]] = v
258
+ else: ###12个layer每个都要留自己的cache_kv
259
+ # print(1,cache["k"].shape)
260
+ cache["k"][cache["stage"]] = torch.cat(
261
+ [cache["k"][cache["stage"]], k], 0
262
+ ) ##本来时序是1,但是proj的时候可能transpose了所以时序到0维了
263
+ cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]], v], 0)
264
+ # print(2, cache["k"].shape)
265
+ src_len = cache["k"][cache["stage"]].shape[0]
266
+ k = cache["k"][cache["stage"]]
267
+ v = cache["v"][cache["stage"]]
268
+ # if attn_mask is not None:
269
+ # attn_mask=attn_mask[-1:,]
270
+ # print(attn_mask.shape,attn_mask)
271
+ cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
272
+ # print(2333,cache)
273
+ # prep attention mask
274
+
275
+ attn_mask = _canonical_mask(
276
+ mask=attn_mask,
277
+ mask_name="attn_mask",
278
+ other_type=None,
279
+ other_name="",
280
+ target_type=q.dtype,
281
+ check_other=False,
282
+ )
283
+
284
+ if attn_mask is not None:
285
+ # ensure attn_mask's dim is 3
286
+ if attn_mask.dim() == 2:
287
+ correct_2d_size = (tgt_len, src_len)
288
+ if attn_mask.shape != correct_2d_size:
289
+ raise RuntimeError(
290
+ f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
291
+ )
292
+ attn_mask = attn_mask.unsqueeze(0)
293
+ elif attn_mask.dim() == 3:
294
+ correct_3d_size = (bsz * num_heads, tgt_len, src_len)
295
+ if attn_mask.shape != correct_3d_size:
296
+ raise RuntimeError(
297
+ f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
298
+ )
299
+ else:
300
+ raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
301
+
302
+ # add bias along batch dimension (currently second)
303
+ if bias_k is not None and bias_v is not None:
304
+ assert static_k is None, "bias cannot be added to static key."
305
+ assert static_v is None, "bias cannot be added to static value."
306
+ k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
307
+ v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
308
+ if attn_mask is not None:
309
+ attn_mask = pad(attn_mask, (0, 1))
310
+ if key_padding_mask is not None:
311
+ key_padding_mask = pad(key_padding_mask, (0, 1))
312
+ else:
313
+ assert bias_k is None
314
+ assert bias_v is None
315
+
316
+ #
317
+ # reshape q, k, v for multihead attention and make em batch first
318
+ #
319
+ q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
320
+ if static_k is None:
321
+ k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
322
+ else:
323
+ # TODO finish disentangling control flow so we don't do in-projections when statics are passed
324
+ assert static_k.size(0) == bsz * num_heads, (
325
+ f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
326
+ )
327
+ assert static_k.size(2) == head_dim, f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
328
+ k = static_k
329
+ if static_v is None:
330
+ v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
331
+ else:
332
+ # TODO finish disentangling control flow so we don't do in-projections when statics are passed
333
+ assert static_v.size(0) == bsz * num_heads, (
334
+ f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
335
+ )
336
+ assert static_v.size(2) == head_dim, f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
337
+ v = static_v
338
+
339
+ # add zero attention along batch dimension (now first)
340
+ if add_zero_attn:
341
+ zero_attn_shape = (bsz * num_heads, 1, head_dim)
342
+ k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
343
+ v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
344
+ if attn_mask is not None:
345
+ attn_mask = pad(attn_mask, (0, 1))
346
+ if key_padding_mask is not None:
347
+ key_padding_mask = pad(key_padding_mask, (0, 1))
348
+
349
+ # update source sequence length after adjustments
350
+ src_len = k.size(1)
351
+
352
+ # merge key padding and attention masks
353
+ if key_padding_mask is not None:
354
+ assert key_padding_mask.shape == (
355
+ bsz,
356
+ src_len,
357
+ ), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
358
+ key_padding_mask = (
359
+ key_padding_mask.view(bsz, 1, 1, src_len).expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
360
+ )
361
+ if attn_mask is None:
362
+ attn_mask = key_padding_mask
363
+ else:
364
+ attn_mask = attn_mask + key_padding_mask
365
+
366
+ # adjust dropout probability
367
+ if not training:
368
+ dropout_p = 0.0
369
+
370
+ #
371
+ # (deep breath) calculate attention and out projection
372
+ #
373
+
374
+ if need_weights:
375
+ B, Nt, E = q.shape
376
+ q_scaled = q / math.sqrt(E)
377
+
378
+ assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
379
+
380
+ if attn_mask is not None:
381
+ attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
382
+ else:
383
+ attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
384
+ attn_output_weights = softmax(attn_output_weights, dim=-1)
385
+ if dropout_p > 0.0:
386
+ attn_output_weights = dropout(attn_output_weights, p=dropout_p)
387
+
388
+ attn_output = torch.bmm(attn_output_weights, v)
389
+
390
+ attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
391
+ attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
392
+ attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
393
+
394
+ # optionally average attention weights over heads
395
+ attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
396
+ if average_attn_weights:
397
+ attn_output_weights = attn_output_weights.mean(dim=1)
398
+
399
+ if not is_batched:
400
+ # squeeze the output if input was unbatched
401
+ attn_output = attn_output.squeeze(1)
402
+ attn_output_weights = attn_output_weights.squeeze(0)
403
+ return attn_output, attn_output_weights
404
+ else:
405
+ # attn_mask can be either (L,S) or (N*num_heads, L, S)
406
+ # if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
407
+ # in order to match the input for SDPA of (N, num_heads, L, S)
408
+ if attn_mask is not None:
409
+ if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
410
+ attn_mask = attn_mask.unsqueeze(0)
411
+ else:
412
+ attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
413
+
414
+ q = q.view(bsz, num_heads, tgt_len, head_dim)
415
+ k = k.view(bsz, num_heads, src_len, head_dim)
416
+ v = v.view(bsz, num_heads, src_len, head_dim)
417
+
418
+ # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
419
+ attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
420
+
421
+ attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
422
+
423
+ attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
424
+ attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
425
+ if not is_batched:
426
+ # squeeze the output if input was unbatched
427
+ attn_output = attn_output.squeeze(1)
428
+ return attn_output, None
GPT_SoVITS/AR/modules/patched_mha_with_cache_onnx.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.nn.functional import *
2
+ from torch.nn.functional import (
3
+ _canonical_mask,
4
+ )
5
+
6
+
7
+ def multi_head_attention_forward_patched(
8
+ query,
9
+ key,
10
+ value,
11
+ embed_dim_to_check: int,
12
+ num_heads: int,
13
+ in_proj_weight,
14
+ in_proj_bias: Optional[Tensor],
15
+ bias_k: Optional[Tensor],
16
+ bias_v: Optional[Tensor],
17
+ add_zero_attn: bool,
18
+ dropout_p: float,
19
+ out_proj_weight: Tensor,
20
+ out_proj_bias: Optional[Tensor],
21
+ training: bool = True,
22
+ key_padding_mask: Optional[Tensor] = None,
23
+ need_weights: bool = True,
24
+ attn_mask: Optional[Tensor] = None,
25
+ use_separate_proj_weight: bool = False,
26
+ q_proj_weight: Optional[Tensor] = None,
27
+ k_proj_weight: Optional[Tensor] = None,
28
+ v_proj_weight: Optional[Tensor] = None,
29
+ static_k: Optional[Tensor] = None,
30
+ static_v: Optional[Tensor] = None,
31
+ average_attn_weights: bool = True,
32
+ is_causal: bool = False,
33
+ cache=None,
34
+ ) -> Tuple[Tensor, Optional[Tensor]]:
35
+ # set up shape vars
36
+ _, _, embed_dim = query.shape
37
+ attn_mask = _canonical_mask(
38
+ mask=attn_mask,
39
+ mask_name="attn_mask",
40
+ other_type=None,
41
+ other_name="",
42
+ target_type=query.dtype,
43
+ check_other=False,
44
+ )
45
+ head_dim = embed_dim // num_heads
46
+
47
+ proj_qkv = linear(query, in_proj_weight, in_proj_bias)
48
+ proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
49
+ q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2]
50
+
51
+ if cache["first_infer"] == 1:
52
+ cache["k"][cache["stage"]] = k
53
+ cache["v"][cache["stage"]] = v
54
+ else:
55
+ cache["k"][cache["stage"]] = torch.cat([cache["k"][cache["stage"]][:-1], k], 0)
56
+ cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]][:-1], v], 0)
57
+ k = cache["k"][cache["stage"]]
58
+ v = cache["v"][cache["stage"]]
59
+ cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
60
+
61
+ attn_mask = _canonical_mask(
62
+ mask=attn_mask,
63
+ mask_name="attn_mask",
64
+ other_type=None,
65
+ other_name="",
66
+ target_type=q.dtype,
67
+ check_other=False,
68
+ )
69
+ attn_mask = attn_mask.unsqueeze(0)
70
+
71
+ q = q.view(-1, num_heads, head_dim).transpose(0, 1)
72
+ k = k.view(-1, num_heads, head_dim).transpose(0, 1)
73
+ v = v.view(-1, num_heads, head_dim).transpose(0, 1)
74
+
75
+ dropout_p = 0.0
76
+ attn_mask = attn_mask.unsqueeze(0)
77
+ q = q.view(num_heads, -1, head_dim).unsqueeze(0)
78
+ k = k.view(num_heads, -1, head_dim).unsqueeze(0)
79
+ v = v.view(num_heads, -1, head_dim).unsqueeze(0)
80
+ attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
81
+ attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(-1, embed_dim)
82
+ attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
83
+ attn_output = attn_output.view(-1, 1, attn_output.size(1))
84
+
85
+ return attn_output
GPT_SoVITS/AR/modules/scaling.py ADDED
@@ -0,0 +1,320 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
2
+ #
3
+ # See ../../../../LICENSE for clarification regarding multiple authors
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ import random
17
+ from typing import Optional
18
+ from typing import Tuple
19
+
20
+ import torch
21
+ import torch.nn as nn
22
+ from torch import Tensor
23
+
24
+
25
+ class DoubleSwishFunction(torch.autograd.Function):
26
+ """
27
+ double_swish(x) = x * torch.sigmoid(x-1)
28
+ This is a definition, originally motivated by its close numerical
29
+ similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
30
+
31
+ Memory-efficient derivative computation:
32
+ double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
33
+ double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
34
+ Now, s'(x) = s(x) * (1-s(x)).
35
+ double_swish'(x) = x * s'(x) + s(x).
36
+ = x * s(x) * (1-s(x)) + s(x).
37
+ = double_swish(x) * (1-s(x)) + s(x)
38
+ ... so we just need to remember s(x) but not x itself.
39
+ """
40
+
41
+ @staticmethod
42
+ def forward(ctx, x: Tensor) -> Tensor:
43
+ requires_grad = x.requires_grad
44
+ x_dtype = x.dtype
45
+ if x.dtype == torch.float16:
46
+ x = x.to(torch.float32)
47
+
48
+ s = torch.sigmoid(x - 1.0)
49
+ y = x * s
50
+
51
+ if requires_grad:
52
+ deriv = y * (1 - s) + s
53
+ # notes on derivative of x * sigmoid(x - 1):
54
+ # https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29
55
+ # min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund
56
+ # max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound.
57
+ # the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which
58
+ # floors), should be expectation-preserving.
59
+ floor = -0.043637
60
+ ceil = 1.2
61
+ d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like(deriv)
62
+ if __name__ == "__main__":
63
+ # for self-testing only.
64
+ assert d_scaled.min() >= 0.0
65
+ assert d_scaled.max() < 256.0
66
+ d_int = d_scaled.to(torch.uint8)
67
+ ctx.save_for_backward(d_int)
68
+ if x.dtype == torch.float16 or torch.is_autocast_enabled():
69
+ y = y.to(torch.float16)
70
+ return y
71
+
72
+ @staticmethod
73
+ def backward(ctx, y_grad: Tensor) -> Tensor:
74
+ (d,) = ctx.saved_tensors
75
+ # the same constants as used in forward pass.
76
+ floor = -0.043637
77
+ ceil = 1.2
78
+ d = d * ((ceil - floor) / 255.0) + floor
79
+ return y_grad * d
80
+
81
+
82
+ class DoubleSwish(torch.nn.Module):
83
+ def forward(self, x: Tensor) -> Tensor:
84
+ """Return double-swish activation function which is an approximation to Swish(Swish(x)),
85
+ that we approximate closely with x * sigmoid(x-1).
86
+ """
87
+ if torch.jit.is_scripting() or torch.jit.is_tracing():
88
+ return x * torch.sigmoid(x - 1.0)
89
+ return DoubleSwishFunction.apply(x)
90
+
91
+
92
+ class ActivationBalancerFunction(torch.autograd.Function):
93
+ @staticmethod
94
+ def forward(
95
+ ctx,
96
+ x: Tensor,
97
+ scale_factor: Tensor,
98
+ sign_factor: Optional[Tensor],
99
+ channel_dim: int,
100
+ ) -> Tensor:
101
+ if channel_dim < 0:
102
+ channel_dim += x.ndim
103
+ ctx.channel_dim = channel_dim
104
+ xgt0 = x > 0
105
+ if sign_factor is None:
106
+ ctx.save_for_backward(xgt0, scale_factor)
107
+ else:
108
+ ctx.save_for_backward(xgt0, scale_factor, sign_factor)
109
+ return x
110
+
111
+ @staticmethod
112
+ def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
113
+ if len(ctx.saved_tensors) == 3:
114
+ xgt0, scale_factor, sign_factor = ctx.saved_tensors
115
+ for _ in range(ctx.channel_dim, x_grad.ndim - 1):
116
+ scale_factor = scale_factor.unsqueeze(-1)
117
+ sign_factor = sign_factor.unsqueeze(-1)
118
+ factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
119
+ else:
120
+ xgt0, scale_factor = ctx.saved_tensors
121
+ for _ in range(ctx.channel_dim, x_grad.ndim - 1):
122
+ scale_factor = scale_factor.unsqueeze(-1)
123
+ factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
124
+ neg_delta_grad = x_grad.abs() * factor
125
+ return (
126
+ x_grad - neg_delta_grad,
127
+ None,
128
+ None,
129
+ None,
130
+ )
131
+
132
+
133
+ def _compute_scale_factor(
134
+ x: Tensor,
135
+ channel_dim: int,
136
+ min_abs: float,
137
+ max_abs: float,
138
+ gain_factor: float,
139
+ max_factor: float,
140
+ ) -> Tensor:
141
+ if channel_dim < 0:
142
+ channel_dim += x.ndim
143
+ sum_dims = [d for d in range(x.ndim) if d != channel_dim]
144
+ x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32)
145
+
146
+ if min_abs == 0.0:
147
+ below_threshold = 0.0
148
+ else:
149
+ # below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
150
+ # x_abs)_mean , min_abs.
151
+ below_threshold = ((min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(min=0, max=max_factor)
152
+
153
+ above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(min=0, max=max_factor)
154
+
155
+ return below_threshold - above_threshold
156
+
157
+
158
+ def _compute_sign_factor(
159
+ x: Tensor,
160
+ channel_dim: int,
161
+ min_positive: float,
162
+ max_positive: float,
163
+ gain_factor: float,
164
+ max_factor: float,
165
+ ) -> Tensor:
166
+ if channel_dim < 0:
167
+ channel_dim += x.ndim
168
+ sum_dims = [d for d in range(x.ndim) if d != channel_dim]
169
+ proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims)
170
+ if min_positive == 0.0:
171
+ factor1 = 0.0
172
+ else:
173
+ # 0 if proportion_positive >= min_positive, else can be
174
+ # as large as max_factor.
175
+ factor1 = ((min_positive - proportion_positive) * (gain_factor / min_positive)).clamp_(min=0, max=max_factor)
176
+
177
+ if max_positive == 1.0:
178
+ factor2 = 0.0
179
+ else:
180
+ # 0 if self.proportion_positive <= max_positive, else can be
181
+ # as large as -max_factor.
182
+ factor2 = ((proportion_positive - max_positive) * (gain_factor / (1.0 - max_positive))).clamp_(
183
+ min=0, max=max_factor
184
+ )
185
+ sign_factor = factor1 - factor2
186
+ # require min_positive != 0 or max_positive != 1:
187
+ assert not isinstance(sign_factor, float)
188
+ return sign_factor
189
+
190
+
191
+ class ActivationBalancer(torch.nn.Module):
192
+ """
193
+ Modifies the backpropped derivatives of a function to try to encourage, for
194
+ each channel, that it is positive at least a proportion `threshold` of the
195
+ time. It does this by multiplying negative derivative values by up to
196
+ (1+max_factor), and positive derivative values by up to (1-max_factor),
197
+ interpolated from 1 at the threshold to those extremal values when none
198
+ of the inputs are positive.
199
+
200
+ Args:
201
+ num_channels: the number of channels
202
+ channel_dim: the dimension/axis corresponding to the channel, e.g.
203
+ -1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
204
+ min_positive: the minimum, per channel, of the proportion of the time
205
+ that (x > 0), below which we start to modify the derivatives.
206
+ max_positive: the maximum, per channel, of the proportion of the time
207
+ that (x > 0), above which we start to modify the derivatives.
208
+ max_factor: the maximum factor by which we modify the derivatives for
209
+ either the sign constraint or the magnitude constraint;
210
+ e.g. with max_factor=0.02, the the derivatives would be multiplied by
211
+ values in the range [0.98..1.02].
212
+ sign_gain_factor: determines the 'gain' with which we increase the
213
+ change in gradient once the constraints on min_positive and max_positive
214
+ are violated.
215
+ scale_gain_factor: determines the 'gain' with which we increase the
216
+ change in gradient once the constraints on min_abs and max_abs
217
+ are violated.
218
+ min_abs: the minimum average-absolute-value difference from the mean
219
+ value per channel, which we allow, before we start to modify
220
+ the derivatives to prevent this.
221
+ max_abs: the maximum average-absolute-value difference from the mean
222
+ value per channel, which we allow, before we start to modify
223
+ the derivatives to prevent this.
224
+ min_prob: determines the minimum probability with which we modify the
225
+ gradients for the {min,max}_positive and {min,max}_abs constraints,
226
+ on each forward(). This is done randomly to prevent all layers
227
+ from doing it at the same time. Early in training we may use
228
+ higher probabilities than this; it will decay to this value.
229
+ """
230
+
231
+ def __init__(
232
+ self,
233
+ num_channels: int,
234
+ channel_dim: int,
235
+ min_positive: float = 0.05,
236
+ max_positive: float = 0.95,
237
+ max_factor: float = 0.04,
238
+ sign_gain_factor: float = 0.01,
239
+ scale_gain_factor: float = 0.02,
240
+ min_abs: float = 0.2,
241
+ max_abs: float = 100.0,
242
+ min_prob: float = 0.1,
243
+ ):
244
+ super(ActivationBalancer, self).__init__()
245
+ self.num_channels = num_channels
246
+ self.channel_dim = channel_dim
247
+ self.min_positive = min_positive
248
+ self.max_positive = max_positive
249
+ self.max_factor = max_factor
250
+ self.min_abs = min_abs
251
+ self.max_abs = max_abs
252
+ self.min_prob = min_prob
253
+ self.sign_gain_factor = sign_gain_factor
254
+ self.scale_gain_factor = scale_gain_factor
255
+
256
+ # count measures how many times the forward() function has been called.
257
+ # We occasionally sync this to a tensor called `count`, that exists to
258
+ # make sure it is synced to disk when we load and save the model.
259
+ self.cpu_count = 0
260
+ self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
261
+
262
+ def forward(self, x: Tensor) -> Tensor:
263
+ if torch.jit.is_scripting() or not x.requires_grad or torch.jit.is_tracing():
264
+ return _no_op(x)
265
+
266
+ count = self.cpu_count
267
+ self.cpu_count += 1
268
+
269
+ if random.random() < 0.01:
270
+ # Occasionally sync self.cpu_count with self.count.
271
+ # count affects the decay of 'prob'. don't do this on every iter,
272
+ # because syncing with the GPU is slow.
273
+ self.cpu_count = max(self.cpu_count, self.count.item())
274
+ self.count.fill_(self.cpu_count)
275
+
276
+ # the prob of doing some work exponentially decreases from 0.5 till it hits
277
+ # a floor at min_prob (==0.1, by default)
278
+ prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0)))
279
+
280
+ if random.random() < prob:
281
+ sign_gain_factor = 0.5
282
+ if self.min_positive != 0.0 or self.max_positive != 1.0:
283
+ sign_factor = _compute_sign_factor(
284
+ x,
285
+ self.channel_dim,
286
+ self.min_positive,
287
+ self.max_positive,
288
+ gain_factor=self.sign_gain_factor / prob,
289
+ max_factor=self.max_factor,
290
+ )
291
+ else:
292
+ sign_factor = None
293
+
294
+ scale_factor = _compute_scale_factor(
295
+ x.detach(),
296
+ self.channel_dim,
297
+ min_abs=self.min_abs,
298
+ max_abs=self.max_abs,
299
+ gain_factor=self.scale_gain_factor / prob,
300
+ max_factor=self.max_factor,
301
+ )
302
+ return ActivationBalancerFunction.apply(
303
+ x,
304
+ scale_factor,
305
+ sign_factor,
306
+ self.channel_dim,
307
+ )
308
+ else:
309
+ return _no_op(x)
310
+
311
+
312
+ def BalancedDoubleSwish(d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25) -> nn.Sequential:
313
+ """
314
+ ActivationBalancer -> DoubleSwish
315
+ """
316
+ balancer = ActivationBalancer(d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob)
317
+ return nn.Sequential(
318
+ balancer,
319
+ DoubleSwish(),
320
+ )
GPT_SoVITS/AR/modules/transformer.py ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
2
+ import copy
3
+ import numbers
4
+ from functools import partial
5
+ from typing import Any
6
+ from typing import Callable
7
+ from typing import List
8
+ from typing import Optional
9
+ from typing import Tuple
10
+ from typing import Union
11
+
12
+ import torch
13
+ from AR.modules.activation import MultiheadAttention
14
+ from AR.modules.scaling import BalancedDoubleSwish
15
+ from torch import nn
16
+ from torch import Tensor
17
+ from torch.nn import functional as F
18
+
19
+ _shape_t = Union[int, List[int], torch.Size]
20
+
21
+
22
+ class LayerNorm(nn.Module):
23
+ __constants__ = ["normalized_shape", "eps", "elementwise_affine"]
24
+ normalized_shape: Tuple[int, ...]
25
+ eps: float
26
+ elementwise_affine: bool
27
+
28
+ def __init__(
29
+ self,
30
+ normalized_shape: _shape_t,
31
+ eps: float = 1e-5,
32
+ elementwise_affine: bool = True,
33
+ device=None,
34
+ dtype=None,
35
+ ) -> None:
36
+ factory_kwargs = {"device": device, "dtype": dtype}
37
+ super(LayerNorm, self).__init__()
38
+ if isinstance(normalized_shape, numbers.Integral):
39
+ # mypy error: incompatible types in assignment
40
+ normalized_shape = (normalized_shape,) # type: ignore[assignment]
41
+ self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
42
+ self.eps = eps
43
+ self.elementwise_affine = elementwise_affine
44
+ if self.elementwise_affine:
45
+ self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
46
+ self.bias = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
47
+ else:
48
+ self.register_parameter("weight", None)
49
+ self.register_parameter("bias", None)
50
+
51
+ self.reset_parameters()
52
+
53
+ def reset_parameters(self) -> None:
54
+ if self.elementwise_affine:
55
+ nn.init.ones_(self.weight)
56
+ nn.init.zeros_(self.bias)
57
+
58
+ def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
59
+ if isinstance(input, tuple):
60
+ input, embedding = input
61
+ return (
62
+ F.layer_norm(
63
+ input,
64
+ self.normalized_shape,
65
+ self.weight,
66
+ self.bias,
67
+ self.eps,
68
+ ),
69
+ embedding,
70
+ )
71
+
72
+ assert embedding is None
73
+ return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps)
74
+
75
+ def extra_repr(self) -> str:
76
+ return "{normalized_shape}, eps={eps}, elementwise_affine={elementwise_affine}".format(**self.__dict__)
77
+
78
+
79
+ class IdentityNorm(nn.Module):
80
+ def __init__(
81
+ self,
82
+ d_model: int,
83
+ eps: float = 1e-5,
84
+ device=None,
85
+ dtype=None,
86
+ ) -> None:
87
+ super(IdentityNorm, self).__init__()
88
+
89
+ def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
90
+ if isinstance(input, tuple):
91
+ return input
92
+
93
+ assert embedding is None
94
+ return input
95
+
96
+
97
+ class TransformerEncoder(nn.Module):
98
+ r"""TransformerEncoder is a stack of N encoder layers. Users can build the
99
+ BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
100
+
101
+ Args:
102
+ encoder_layer: an instance of the TransformerEncoderLayer() class (required).
103
+ num_layers: the number of sub-encoder-layers in the encoder (required).
104
+ norm: the layer normalization component (optional).
105
+ enable_nested_tensor: if True, input will automatically convert to nested tensor
106
+ (and convert back on output). This will improve the overall performance of
107
+ TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
108
+
109
+ Examples::
110
+ >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
111
+ >>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
112
+ >>> src = torch.rand(10, 32, 512)
113
+ >>> out = transformer_encoder(src)
114
+ """
115
+
116
+ __constants__ = ["norm"]
117
+
118
+ def __init__(self, encoder_layer, num_layers, norm=None):
119
+ super(TransformerEncoder, self).__init__()
120
+ self.layers = _get_clones(encoder_layer, num_layers)
121
+ self.num_layers = num_layers
122
+ self.norm = norm
123
+
124
+ def forward(
125
+ self,
126
+ src: Tensor,
127
+ mask: Optional[Tensor] = None,
128
+ src_key_padding_mask: Optional[Tensor] = None,
129
+ return_layer_states: bool = False,
130
+ cache=None,
131
+ ) -> Tensor:
132
+ r"""Pass the input through the encoder layers in turn.
133
+
134
+ Args:
135
+ src: the sequence to the encoder (required).
136
+ mask: the mask for the src sequence (optional).
137
+ src_key_padding_mask: the mask for the src keys per batch (optional).
138
+ return_layer_states: return layers' state (optional).
139
+
140
+ Shape:
141
+ see the docs in Transformer class.
142
+ """
143
+ if return_layer_states:
144
+ layer_states = [] # layers' output
145
+ output = src
146
+ for mod in self.layers:
147
+ output = mod(
148
+ output,
149
+ src_mask=mask,
150
+ src_key_padding_mask=src_key_padding_mask,
151
+ cache=cache,
152
+ )
153
+ layer_states.append(output[0])
154
+
155
+ if self.norm is not None:
156
+ output = self.norm(output)
157
+
158
+ return layer_states, output
159
+
160
+ output = src
161
+ for mod in self.layers:
162
+ output = mod(
163
+ output,
164
+ src_mask=mask,
165
+ src_key_padding_mask=src_key_padding_mask,
166
+ cache=cache,
167
+ )
168
+
169
+ if self.norm is not None:
170
+ output = self.norm(output)
171
+
172
+ return output
173
+
174
+
175
+ class TransformerEncoderLayer(nn.Module):
176
+ __constants__ = ["batch_first", "norm_first"]
177
+
178
+ def __init__(
179
+ self,
180
+ d_model: int,
181
+ nhead: int,
182
+ dim_feedforward: int = 2048,
183
+ dropout: float = 0.1,
184
+ activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
185
+ batch_first: bool = False,
186
+ norm_first: bool = False,
187
+ device=None,
188
+ dtype=None,
189
+ linear1_self_attention_cls: nn.Module = nn.Linear,
190
+ linear2_self_attention_cls: nn.Module = nn.Linear,
191
+ linear1_feedforward_cls: nn.Module = nn.Linear,
192
+ linear2_feedforward_cls: nn.Module = nn.Linear,
193
+ layer_norm_cls: nn.Module = LayerNorm,
194
+ layer_norm_eps: float = 1e-5,
195
+ adaptive_layer_norm=False,
196
+ ) -> None:
197
+ factory_kwargs = {"device": device, "dtype": dtype}
198
+ super(TransformerEncoderLayer, self).__init__()
199
+ # print(233333333333,d_model,nhead)
200
+ # import os
201
+ # os._exit(2333333)
202
+ self.self_attn = MultiheadAttention(
203
+ d_model, # 512 16
204
+ nhead,
205
+ dropout=dropout,
206
+ batch_first=batch_first,
207
+ linear1_cls=linear1_self_attention_cls,
208
+ linear2_cls=linear2_self_attention_cls,
209
+ **factory_kwargs,
210
+ )
211
+
212
+ # Implementation of Feedforward model
213
+ self.linear1 = linear1_feedforward_cls(d_model, dim_feedforward, **factory_kwargs)
214
+ self.dropout = nn.Dropout(dropout)
215
+ self.linear2 = linear2_feedforward_cls(dim_feedforward, d_model, **factory_kwargs)
216
+
217
+ self.norm_first = norm_first
218
+ self.dropout1 = nn.Dropout(dropout)
219
+ self.dropout2 = nn.Dropout(dropout)
220
+
221
+ # Legacy string support for activation function.
222
+ if isinstance(activation, str):
223
+ activation = _get_activation_fn(activation)
224
+ elif isinstance(activation, partial):
225
+ activation = activation(d_model)
226
+ elif activation == BalancedDoubleSwish:
227
+ activation = BalancedDoubleSwish(d_model)
228
+
229
+ # # We can't test self.activation in forward() in TorchScript,
230
+ # # so stash some information about it instead.
231
+ # if activation is F.relu or isinstance(activation, torch.nn.ReLU):
232
+ # self.activation_relu_or_gelu = 1
233
+ # elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
234
+ # self.activation_relu_or_gelu = 2
235
+ # else:
236
+ # self.activation_relu_or_gelu = 0
237
+ self.activation = activation
238
+
239
+ norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
240
+ if layer_norm_cls == IdentityNorm:
241
+ norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
242
+ else:
243
+ norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
244
+
245
+ if adaptive_layer_norm:
246
+ self.norm1 = AdaptiveLayerNorm(d_model, norm1)
247
+ self.norm2 = AdaptiveLayerNorm(d_model, norm2)
248
+ else:
249
+ self.norm1 = norm1
250
+ self.norm2 = norm2
251
+
252
+ def __setstate__(self, state):
253
+ super(TransformerEncoderLayer, self).__setstate__(state)
254
+ if not hasattr(self, "activation"):
255
+ self.activation = F.relu
256
+
257
+ def forward(
258
+ self,
259
+ src: Tensor,
260
+ src_mask: Optional[Tensor] = None,
261
+ src_key_padding_mask: Optional[Tensor] = None,
262
+ cache=None,
263
+ ) -> Tensor:
264
+ r"""Pass the input through the encoder layer.
265
+
266
+ Args:
267
+ src: the sequence to the encoder layer (required).
268
+ src_mask: the mask for the src sequence (optional).
269
+ src_key_padding_mask: the mask for the src keys per batch (optional).
270
+
271
+ Shape:
272
+ see the docs in Transformer class.
273
+ """
274
+ x, stage_embedding = src, None
275
+ is_src_tuple = False
276
+ if isinstance(src, tuple):
277
+ x, stage_embedding = src
278
+ is_src_tuple = True
279
+
280
+ if src_key_padding_mask is not None:
281
+ _skpm_dtype = src_key_padding_mask.dtype
282
+ if _skpm_dtype != torch.bool and not torch.is_floating_point(src_key_padding_mask):
283
+ raise AssertionError("only bool and floating types of key_padding_mask are supported")
284
+
285
+ if self.norm_first:
286
+ x = x + self._sa_block(
287
+ self.norm1(x, stage_embedding),
288
+ src_mask,
289
+ src_key_padding_mask,
290
+ cache=cache,
291
+ )
292
+ x = x + self._ff_block(self.norm2(x, stage_embedding))
293
+ else:
294
+ x = self.norm1(
295
+ x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
296
+ stage_embedding,
297
+ )
298
+ x = self.norm2(x + self._ff_block(x), stage_embedding)
299
+
300
+ if is_src_tuple:
301
+ return (x, stage_embedding)
302
+ return x
303
+
304
+ # self-attention block
305
+ def _sa_block(
306
+ self,
307
+ x: Tensor,
308
+ attn_mask: Optional[Tensor],
309
+ key_padding_mask: Optional[Tensor],
310
+ cache=None,
311
+ ) -> Tensor:
312
+ # print(x.shape,attn_mask.shape,key_padding_mask)
313
+ # torch.Size([1, 188, 512]) torch.Size([188, 188]) None
314
+ # import os
315
+ # os._exit(23333)
316
+ x = self.self_attn(
317
+ x,
318
+ x,
319
+ x,
320
+ attn_mask=attn_mask,
321
+ key_padding_mask=key_padding_mask,
322
+ need_weights=False,
323
+ cache=cache,
324
+ )[0]
325
+ return self.dropout1(x)
326
+
327
+ # feed forward block
328
+ def _ff_block(self, x: Tensor) -> Tensor:
329
+ x = self.linear2(self.dropout(self.activation(self.linear1(x))))
330
+ return self.dropout2(x)
331
+
332
+
333
+ class AdaptiveLayerNorm(nn.Module):
334
+ r"""Adaptive Layer Normalization"""
335
+
336
+ def __init__(self, d_model, norm) -> None:
337
+ super(AdaptiveLayerNorm, self).__init__()
338
+ self.project_layer = nn.Linear(d_model, 2 * d_model)
339
+ self.norm = norm
340
+ self.d_model = d_model
341
+ self.eps = self.norm.eps
342
+
343
+ def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
344
+ if isinstance(input, tuple):
345
+ input, embedding = input
346
+ weight, bias = torch.split(
347
+ self.project_layer(embedding),
348
+ split_size_or_sections=self.d_model,
349
+ dim=-1,
350
+ )
351
+ return (weight * self.norm(input) + bias, embedding)
352
+
353
+ weight, bias = torch.split(
354
+ self.project_layer(embedding),
355
+ split_size_or_sections=self.d_model,
356
+ dim=-1,
357
+ )
358
+ return weight * self.norm(input) + bias
359
+
360
+
361
+ def _get_clones(module, N):
362
+ return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
GPT_SoVITS/AR/modules/transformer_onnx.py ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
2
+ import copy
3
+ import numbers
4
+ from functools import partial
5
+ from typing import Any
6
+ from typing import Callable
7
+ from typing import List
8
+ from typing import Optional
9
+ from typing import Tuple
10
+ from typing import Union
11
+
12
+ import torch
13
+ from AR.modules.activation_onnx import MultiheadAttention
14
+ from AR.modules.scaling import BalancedDoubleSwish
15
+ from torch import nn
16
+ from torch import Tensor
17
+ from torch.nn import functional as F
18
+
19
+ _shape_t = Union[int, List[int], torch.Size]
20
+
21
+
22
+ class LayerNorm(nn.Module):
23
+ __constants__ = ["normalized_shape", "eps", "elementwise_affine"]
24
+ normalized_shape: Tuple[int, ...]
25
+ eps: float
26
+ elementwise_affine: bool
27
+
28
+ def __init__(
29
+ self,
30
+ normalized_shape: _shape_t,
31
+ eps: float = 1e-5,
32
+ elementwise_affine: bool = True,
33
+ device=None,
34
+ dtype=None,
35
+ ) -> None:
36
+ factory_kwargs = {"device": device, "dtype": dtype}
37
+ super(LayerNorm, self).__init__()
38
+ if isinstance(normalized_shape, numbers.Integral):
39
+ # mypy error: incompatible types in assignment
40
+ normalized_shape = (normalized_shape,) # type: ignore[assignment]
41
+ self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
42
+ self.eps = eps
43
+ self.elementwise_affine = elementwise_affine
44
+ if self.elementwise_affine:
45
+ self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
46
+ self.bias = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
47
+ else:
48
+ self.register_parameter("weight", None)
49
+ self.register_parameter("bias", None)
50
+
51
+ self.reset_parameters()
52
+
53
+ def reset_parameters(self) -> None:
54
+ if self.elementwise_affine:
55
+ nn.init.ones_(self.weight)
56
+ nn.init.zeros_(self.bias)
57
+
58
+ def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
59
+ if isinstance(input, tuple):
60
+ input, embedding = input
61
+ return (
62
+ F.layer_norm(
63
+ input,
64
+ self.normalized_shape,
65
+ self.weight,
66
+ self.bias,
67
+ self.eps,
68
+ ),
69
+ embedding,
70
+ )
71
+
72
+ assert embedding is None
73
+ return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps)
74
+
75
+ def extra_repr(self) -> str:
76
+ return "{normalized_shape}, eps={eps}, elementwise_affine={elementwise_affine}".format(**self.__dict__)
77
+
78
+
79
+ class IdentityNorm(nn.Module):
80
+ def __init__(
81
+ self,
82
+ d_model: int,
83
+ eps: float = 1e-5,
84
+ device=None,
85
+ dtype=None,
86
+ ) -> None:
87
+ super(IdentityNorm, self).__init__()
88
+
89
+ def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
90
+ if isinstance(input, tuple):
91
+ return input
92
+
93
+ assert embedding is None
94
+ return input
95
+
96
+
97
+ class TransformerEncoder(nn.Module):
98
+ r"""TransformerEncoder is a stack of N encoder layers. Users can build the
99
+ BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
100
+
101
+ Args:
102
+ encoder_layer: an instance of the TransformerEncoderLayer() class (required).
103
+ num_layers: the number of sub-encoder-layers in the encoder (required).
104
+ norm: the layer normalization component (optional).
105
+ enable_nested_tensor: if True, input will automatically convert to nested tensor
106
+ (and convert back on output). This will improve the overall performance of
107
+ TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
108
+
109
+ Examples::
110
+ >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
111
+ >>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
112
+ >>> src = torch.rand(10, 32, 512)
113
+ >>> out = transformer_encoder(src)
114
+ """
115
+
116
+ __constants__ = ["norm"]
117
+
118
+ def __init__(self, encoder_layer, num_layers, norm=None):
119
+ super(TransformerEncoder, self).__init__()
120
+ self.layers = _get_clones(encoder_layer, num_layers)
121
+ self.num_layers = num_layers
122
+ self.norm = norm
123
+
124
+ def forward(
125
+ self,
126
+ src: Tensor,
127
+ mask: Optional[Tensor] = None,
128
+ src_key_padding_mask: Optional[Tensor] = None,
129
+ return_layer_states: bool = False,
130
+ cache=None,
131
+ ) -> Tensor:
132
+ output = src
133
+ for mod in self.layers:
134
+ output = mod(
135
+ output,
136
+ src_mask=mask,
137
+ src_key_padding_mask=src_key_padding_mask,
138
+ cache=cache,
139
+ )
140
+
141
+ if self.norm is not None:
142
+ output = self.norm(output)
143
+
144
+ return output
145
+
146
+
147
+ class TransformerEncoderLayer(nn.Module):
148
+ __constants__ = ["batch_first", "norm_first"]
149
+
150
+ def __init__(
151
+ self,
152
+ d_model: int,
153
+ nhead: int,
154
+ dim_feedforward: int = 2048,
155
+ dropout: float = 0.1,
156
+ activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
157
+ batch_first: bool = False,
158
+ norm_first: bool = False,
159
+ device=None,
160
+ dtype=None,
161
+ linear1_self_attention_cls: nn.Module = nn.Linear,
162
+ linear2_self_attention_cls: nn.Module = nn.Linear,
163
+ linear1_feedforward_cls: nn.Module = nn.Linear,
164
+ linear2_feedforward_cls: nn.Module = nn.Linear,
165
+ layer_norm_cls: nn.Module = LayerNorm,
166
+ layer_norm_eps: float = 1e-5,
167
+ adaptive_layer_norm=False,
168
+ ) -> None:
169
+ factory_kwargs = {"device": device, "dtype": dtype}
170
+ super(TransformerEncoderLayer, self).__init__()
171
+ self.self_attn = MultiheadAttention(
172
+ d_model, # 512 16
173
+ nhead,
174
+ dropout=dropout,
175
+ batch_first=batch_first,
176
+ linear1_cls=linear1_self_attention_cls,
177
+ linear2_cls=linear2_self_attention_cls,
178
+ **factory_kwargs,
179
+ )
180
+ self.linear1 = linear1_feedforward_cls(d_model, dim_feedforward, **factory_kwargs)
181
+ self.dropout = nn.Dropout(dropout)
182
+ self.linear2 = linear2_feedforward_cls(dim_feedforward, d_model, **factory_kwargs)
183
+ self.norm_first = norm_first
184
+ self.dropout1 = nn.Dropout(dropout)
185
+ self.dropout2 = nn.Dropout(dropout)
186
+ if isinstance(activation, str):
187
+ activation = _get_activation_fn(activation)
188
+ elif isinstance(activation, partial):
189
+ activation = activation(d_model)
190
+ elif activation == BalancedDoubleSwish:
191
+ activation = BalancedDoubleSwish(d_model)
192
+ self.activation = activation
193
+
194
+ norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
195
+ if layer_norm_cls == IdentityNorm:
196
+ norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
197
+ else:
198
+ norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
199
+
200
+ if adaptive_layer_norm:
201
+ self.norm1 = AdaptiveLayerNorm(d_model, norm1)
202
+ self.norm2 = AdaptiveLayerNorm(d_model, norm2)
203
+ else:
204
+ self.norm1 = norm1
205
+ self.norm2 = norm2
206
+
207
+ def __setstate__(self, state):
208
+ super(TransformerEncoderLayer, self).__setstate__(state)
209
+ if not hasattr(self, "activation"):
210
+ self.activation = F.relu
211
+
212
+ def forward(
213
+ self,
214
+ src: Tensor,
215
+ src_mask: Optional[Tensor] = None,
216
+ src_key_padding_mask: Optional[Tensor] = None,
217
+ cache=None,
218
+ ) -> Tensor:
219
+ x = src
220
+ stage_embedding = None
221
+ x = self.norm1(
222
+ x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
223
+ stage_embedding,
224
+ )
225
+ x = self.norm2(x + self._ff_block(x), stage_embedding)
226
+
227
+ return x
228
+
229
+ def _sa_block(
230
+ self,
231
+ x: Tensor,
232
+ attn_mask: Optional[Tensor],
233
+ key_padding_mask: Optional[Tensor],
234
+ cache=None,
235
+ ) -> Tensor:
236
+ x = self.self_attn(
237
+ x,
238
+ x,
239
+ x,
240
+ attn_mask=attn_mask,
241
+ key_padding_mask=key_padding_mask,
242
+ need_weights=False,
243
+ cache=cache,
244
+ )
245
+ return self.dropout1(x)
246
+
247
+ def _ff_block(self, x: Tensor) -> Tensor:
248
+ x = self.linear2(self.dropout(self.activation(self.linear1(x))))
249
+ return self.dropout2(x)
250
+
251
+
252
+ class AdaptiveLayerNorm(nn.Module):
253
+ r"""Adaptive Layer Normalization"""
254
+
255
+ def __init__(self, d_model, norm) -> None:
256
+ super(AdaptiveLayerNorm, self).__init__()
257
+ self.project_layer = nn.Linear(d_model, 2 * d_model)
258
+ self.norm = norm
259
+ self.d_model = d_model
260
+ self.eps = self.norm.eps
261
+
262
+ def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
263
+ if isinstance(input, tuple):
264
+ input, embedding = input
265
+ weight, bias = torch.split(
266
+ self.project_layer(embedding),
267
+ split_size_or_sections=self.d_model,
268
+ dim=-1,
269
+ )
270
+ return (weight * self.norm(input) + bias, embedding)
271
+
272
+ weight, bias = torch.split(
273
+ self.project_layer(embedding),
274
+ split_size_or_sections=self.d_model,
275
+ dim=-1,
276
+ )
277
+ return weight * self.norm(input) + bias
278
+
279
+
280
+ def _get_clones(module, N):
281
+ return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
GPT_SoVITS/AR/text_processing/__init__.py ADDED
File without changes
GPT_SoVITS/AR/text_processing/phonemizer.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/text_processing/phonemizer.py
2
+ # reference: https://github.com/lifeiteng/vall-e
3
+ import itertools
4
+ import re
5
+ from typing import Dict
6
+ from typing import List
7
+
8
+ import regex
9
+ from gruut import sentences
10
+ from gruut.const import Sentence
11
+ from gruut.const import Word
12
+ from AR.text_processing.symbols import SYMBOL_TO_ID
13
+
14
+
15
+ class GruutPhonemizer:
16
+ def __init__(self, language: str):
17
+ self._phonemizer = sentences
18
+ self.lang = language
19
+ self.symbol_to_id = SYMBOL_TO_ID
20
+ self._special_cases_dict: Dict[str] = {
21
+ r"\.\.\.": "... ",
22
+ ";": "; ",
23
+ ":": ": ",
24
+ ",": ", ",
25
+ r"\.": ". ",
26
+ "!": "! ",
27
+ r"\?": "? ",
28
+ "—": "—",
29
+ "…": "… ",
30
+ "«": "«",
31
+ "»": "»",
32
+ }
33
+ self._punctuation_regexp: str = rf"([{''.join(self._special_cases_dict.keys())}])"
34
+
35
+ def _normalize_punctuation(self, text: str) -> str:
36
+ text = regex.sub(rf"\pZ+{self._punctuation_regexp}", r"\1", text)
37
+ text = regex.sub(rf"{self._punctuation_regexp}(\pL)", r"\1 \2", text)
38
+ text = regex.sub(r"\pZ+", r" ", text)
39
+ return text.strip()
40
+
41
+ def _convert_punctuation(self, word: Word) -> str:
42
+ if not word.phonemes:
43
+ return ""
44
+ if word.phonemes[0] in ["‖", "|"]:
45
+ return word.text.strip()
46
+
47
+ phonemes = "".join(word.phonemes)
48
+ # remove modifier characters ˈˌː with regex
49
+ phonemes = re.sub(r"[ˈˌː͡]", "", phonemes)
50
+ return phonemes.strip()
51
+
52
+ def phonemize(self, text: str, espeak: bool = False) -> str:
53
+ text_to_phonemize: str = self._normalize_punctuation(text)
54
+ sents: List[Sentence] = [sent for sent in self._phonemizer(text_to_phonemize, lang="en-us", espeak=espeak)]
55
+ words: List[str] = [self._convert_punctuation(word) for word in itertools.chain(*sents)]
56
+ return " ".join(words)
57
+
58
+ def transform(self, phonemes):
59
+ # convert phonemes to ids
60
+ # dictionary is in symbols.py
61
+ return [self.symbol_to_id[p] for p in phonemes if p in self.symbol_to_id.keys()]
62
+
63
+
64
+ if __name__ == "__main__":
65
+ phonemizer = GruutPhonemizer("en-us")
66
+ # text -> IPA
67
+ phonemes = phonemizer.phonemize("Hello, wor-ld ?")
68
+ print("phonemes:", phonemes)
69
+ print("len(phonemes):", len(phonemes))
70
+ phoneme_ids = phonemizer.transform(phonemes)
71
+ print("phoneme_ids:", phoneme_ids)
72
+ print("len(phoneme_ids):", len(phoneme_ids))
GPT_SoVITS/AR/text_processing/symbols.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/text_processing/symbols.py
2
+ # reference: https://github.com/lifeiteng/vall-e
3
+ PAD = "_"
4
+ PUNCTUATION = ';:,.!?¡¿—…"«»“” '
5
+ LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
6
+ IPA_LETTERS = (
7
+ "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
8
+ )
9
+ SYMBOLS = [PAD] + list(PUNCTUATION) + list(LETTERS) + list(IPA_LETTERS)
10
+ SPACE_ID = SYMBOLS.index(" ")
11
+ SYMBOL_TO_ID = {s: i for i, s in enumerate(SYMBOLS)}
12
+ ID_TO_SYMBOL = {i: s for i, s in enumerate(SYMBOLS)}
GPT_SoVITS/AR/utils/__init__.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+
4
+ def str2bool(str):
5
+ return True if str.lower() == "true" else False
6
+
7
+
8
+ def get_newest_ckpt(string_list):
9
+ # 定义一个正则表达式模式,用于匹配字符串中的数字
10
+ pattern = r"epoch=(\d+)-step=(\d+)\.ckpt"
11
+
12
+ # 使用正则表达式提取每个字符串中的数字信息,并创建一个包含元组的列表
13
+ extracted_info = []
14
+ for string in string_list:
15
+ match = re.match(pattern, string)
16
+ if match:
17
+ epoch = int(match.group(1))
18
+ step = int(match.group(2))
19
+ extracted_info.append((epoch, step, string))
20
+ # 按照 epoch 后面的数字和 step 后面的数字进行排序
21
+ sorted_info = sorted(extracted_info, key=lambda x: (x[0], x[1]), reverse=True)
22
+ # 获取最新的 ckpt 文件名
23
+ newest_ckpt = sorted_info[0][2]
24
+ return newest_ckpt
25
+
26
+
27
+ # 文本存在且不为空时 return True
28
+ def check_txt_file(file_path):
29
+ try:
30
+ with open(file_path, "r") as file:
31
+ text = file.readline().strip()
32
+ assert text.strip() != ""
33
+ return text
34
+ except Exception:
35
+ return False
36
+ return False
GPT_SoVITS/AR/utils/initialize.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """Initialize modules for espnet2 neural networks."""
3
+
4
+ import torch
5
+ from typeguard import check_argument_types
6
+
7
+
8
+ def initialize(model: torch.nn.Module, init: str):
9
+ """Initialize weights of a neural network module.
10
+
11
+ Parameters are initialized using the given method or distribution.
12
+
13
+ Custom initialization routines can be implemented into submodules
14
+ as function `espnet_initialization_fn` within the custom module.
15
+
16
+ Args:
17
+ model: Target.
18
+ init: Method of initialization.
19
+ """
20
+ assert check_argument_types()
21
+ print("init with", init)
22
+
23
+ # weight init
24
+ for p in model.parameters():
25
+ if p.dim() > 1:
26
+ if init == "xavier_uniform":
27
+ torch.nn.init.xavier_uniform_(p.data)
28
+ elif init == "xavier_normal":
29
+ torch.nn.init.xavier_normal_(p.data)
30
+ elif init == "kaiming_uniform":
31
+ torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
32
+ elif init == "kaiming_normal":
33
+ torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
34
+ else:
35
+ raise ValueError("Unknown initialization: " + init)
36
+ # bias init
37
+ for name, p in model.named_parameters():
38
+ if ".bias" in name and p.dim() == 1:
39
+ p.data.zero_()
GPT_SoVITS/AR/utils/io.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+
3
+ import torch
4
+ import yaml
5
+
6
+
7
+ def load_yaml_config(path):
8
+ with open(path) as f:
9
+ config = yaml.full_load(f)
10
+ return config
11
+
12
+
13
+ def save_config_to_yaml(config, path):
14
+ assert path.endswith(".yaml")
15
+ with open(path, "w") as f:
16
+ f.write(yaml.dump(config))
17
+ f.close()
18
+
19
+
20
+ def write_args(args, path):
21
+ args_dict = dict((name, getattr(args, name)) for name in dir(args) if not name.startswith("_"))
22
+ with open(path, "a") as args_file:
23
+ args_file.write("==> torch version: {}\n".format(torch.__version__))
24
+ args_file.write("==> cudnn version: {}\n".format(torch.backends.cudnn.version()))
25
+ args_file.write("==> Cmd:\n")
26
+ args_file.write(str(sys.argv))
27
+ args_file.write("\n==> args:\n")
28
+ for k, v in sorted(args_dict.items()):
29
+ args_file.write(" %s: %s\n" % (str(k), str(v)))
30
+ args_file.close()
GPT_SoVITS/BigVGAN/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 NVIDIA CORPORATION.
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
GPT_SoVITS/BigVGAN/README.md ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## BigVGAN: A Universal Neural Vocoder with Large-Scale Training
2
+
3
+ #### Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, Sungroh Yoon
4
+
5
+ [[Paper]](https://arxiv.org/abs/2206.04658) - [[Code]](https://github.com/NVIDIA/BigVGAN) - [[Showcase]](https://bigvgan-demo.github.io/) - [[Project Page]](https://research.nvidia.com/labs/adlr/projects/bigvgan/) - [[Weights]](https://huggingface.co/collections/nvidia/bigvgan-66959df3d97fd7d98d97dc9a) - [[Demo]](https://huggingface.co/spaces/nvidia/BigVGAN)
6
+
7
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bigvgan-a-universal-neural-vocoder-with-large/speech-synthesis-on-libritts)](https://paperswithcode.com/sota/speech-synthesis-on-libritts?p=bigvgan-a-universal-neural-vocoder-with-large)
8
+
9
+ <center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800"></center>
10
+
11
+ ## News
12
+ - **Sep 2024 (v2.4):**
13
+ - We have updated the pretrained checkpoints trained for 5M steps. This is final release of the BigVGAN-v2 checkpoints.
14
+
15
+ - **Jul 2024 (v2.3):**
16
+ - General refactor and code improvements for improved readability.
17
+ - Fully fused CUDA kernel of anti-alised activation (upsampling + activation + downsampling) with inference speed benchmark.
18
+
19
+ - **Jul 2024 (v2.2):** The repository now includes an interactive local demo using gradio.
20
+
21
+ - **Jul 2024 (v2.1):** BigVGAN is now integrated with 🤗 Hugging Face Hub with easy access to inference using pretrained checkpoints. We also provide an interactive demo on Hugging Face Spaces.
22
+
23
+ - **Jul 2024 (v2):** We release BigVGAN-v2 along with pretrained checkpoints. Below are the highlights:
24
+ - Custom CUDA kernel for inference: we provide a fused upsampling + activation kernel written in CUDA for accelerated inference speed. Our test shows 1.5 - 3x faster speed on a single A100 GPU.
25
+ - Improved discriminator and loss: BigVGAN-v2 is trained using a [multi-scale sub-band CQT discriminator](https://arxiv.org/abs/2311.14957) and a [multi-scale mel spectrogram loss](https://arxiv.org/abs/2306.06546).
26
+ - Larger training data: BigVGAN-v2 is trained using datasets containing diverse audio types, including speech in multiple languages, environmental sounds, and instruments.
27
+ - We provide pretrained checkpoints of BigVGAN-v2 using diverse audio configurations, supporting up to 44 kHz sampling rate and 512x upsampling ratio.
28
+
29
+ ## Installation
30
+
31
+ The codebase has been tested on Python `3.10` and PyTorch `2.3.1` conda packages with either `pytorch-cuda=12.1` or `pytorch-cuda=11.8`. Below is an example command to create the conda environment:
32
+
33
+ ```shell
34
+ conda create -n bigvgan python=3.10 pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
35
+ conda activate bigvgan
36
+ ```
37
+
38
+ Clone the repository and install dependencies:
39
+
40
+ ```shell
41
+ git clone https://github.com/NVIDIA/BigVGAN
42
+ cd BigVGAN
43
+ pip install -r requirements.txt
44
+ ```
45
+
46
+ ## Inference Quickstart using 🤗 Hugging Face Hub
47
+
48
+ Below example describes how you can use BigVGAN: load the pretrained BigVGAN generator from Hugging Face Hub, compute mel spectrogram from input waveform, and generate synthesized waveform using the mel spectrogram as the model's input.
49
+
50
+ ```python
51
+ device = 'cuda'
52
+
53
+ import torch
54
+ import bigvgan
55
+ import librosa
56
+ from meldataset import get_mel_spectrogram
57
+
58
+ # instantiate the model. You can optionally set use_cuda_kernel=True for faster inference.
59
+ model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_24khz_100band_256x', use_cuda_kernel=False)
60
+
61
+ # remove weight norm in the model and set to eval mode
62
+ model.remove_weight_norm()
63
+ model = model.eval().to(device)
64
+
65
+ # load wav file and compute mel spectrogram
66
+ wav_path = '/path/to/your/audio.wav'
67
+ wav, sr = librosa.load(wav_path, sr=model.h.sampling_rate, mono=True) # wav is np.ndarray with shape [T_time] and values in [-1, 1]
68
+ wav = torch.FloatTensor(wav).unsqueeze(0) # wav is FloatTensor with shape [B(1), T_time]
69
+
70
+ # compute mel spectrogram from the ground truth audio
71
+ mel = get_mel_spectrogram(wav, model.h).to(device) # mel is FloatTensor with shape [B(1), C_mel, T_frame]
72
+
73
+ # generate waveform from mel
74
+ with torch.inference_mode():
75
+ wav_gen = model(mel) # wav_gen is FloatTensor with shape [B(1), 1, T_time] and values in [-1, 1]
76
+ wav_gen_float = wav_gen.squeeze(0).cpu() # wav_gen is FloatTensor with shape [1, T_time]
77
+
78
+ # you can convert the generated waveform to 16 bit linear PCM
79
+ wav_gen_int16 = (wav_gen_float * 32767.0).numpy().astype('int16') # wav_gen is now np.ndarray with shape [1, T_time] and int16 dtype
80
+ ```
81
+
82
+ ## Local gradio demo <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a>
83
+
84
+ You can run a local gradio demo using below command:
85
+
86
+ ```python
87
+ pip install -r demo/requirements.txt
88
+ python demo/app.py
89
+ ```
90
+
91
+ ## Training
92
+
93
+ Create symbolic link to the root of the dataset. The codebase uses filelist with the relative path from the dataset. Below are the example commands for LibriTTS dataset:
94
+
95
+ ```shell
96
+ cd filelists/LibriTTS && \
97
+ ln -s /path/to/your/LibriTTS/train-clean-100 train-clean-100 && \
98
+ ln -s /path/to/your/LibriTTS/train-clean-360 train-clean-360 && \
99
+ ln -s /path/to/your/LibriTTS/train-other-500 train-other-500 && \
100
+ ln -s /path/to/your/LibriTTS/dev-clean dev-clean && \
101
+ ln -s /path/to/your/LibriTTS/dev-other dev-other && \
102
+ ln -s /path/to/your/LibriTTS/test-clean test-clean && \
103
+ ln -s /path/to/your/LibriTTS/test-other test-other && \
104
+ cd ../..
105
+ ```
106
+
107
+ Train BigVGAN model. Below is an example command for training BigVGAN-v2 using LibriTTS dataset at 24kHz with a full 100-band mel spectrogram as input:
108
+
109
+ ```shell
110
+ python train.py \
111
+ --config configs/bigvgan_v2_24khz_100band_256x.json \
112
+ --input_wavs_dir filelists/LibriTTS \
113
+ --input_training_file filelists/LibriTTS/train-full.txt \
114
+ --input_validation_file filelists/LibriTTS/val-full.txt \
115
+ --list_input_unseen_wavs_dir filelists/LibriTTS filelists/LibriTTS \
116
+ --list_input_unseen_validation_file filelists/LibriTTS/dev-clean.txt filelists/LibriTTS/dev-other.txt \
117
+ --checkpoint_path exp/bigvgan_v2_24khz_100band_256x
118
+ ```
119
+
120
+ ## Synthesis
121
+
122
+ Synthesize from BigVGAN model. Below is an example command for generating audio from the model.
123
+ It computes mel spectrograms using wav files from `--input_wavs_dir` and saves the generated audio to `--output_dir`.
124
+
125
+ ```shell
126
+ python inference.py \
127
+ --checkpoint_file /path/to/your/bigvgan_v2_24khz_100band_256x/bigvgan_generator.pt \
128
+ --input_wavs_dir /path/to/your/input_wav \
129
+ --output_dir /path/to/your/output_wav
130
+ ```
131
+
132
+ `inference_e2e.py` supports synthesis directly from the mel spectrogram saved in `.npy` format, with shapes `[1, channel, frame]` or `[channel, frame]`.
133
+ It loads mel spectrograms from `--input_mels_dir` and saves the generated audio to `--output_dir`.
134
+
135
+ Make sure that the STFT hyperparameters for mel spectrogram are the same as the model, which are defined in `config.json` of the corresponding model.
136
+
137
+ ```shell
138
+ python inference_e2e.py \
139
+ --checkpoint_file /path/to/your/bigvgan_v2_24khz_100band_256x/bigvgan_generator.pt \
140
+ --input_mels_dir /path/to/your/input_mel \
141
+ --output_dir /path/to/your/output_wav
142
+ ```
143
+
144
+ ## Using Custom CUDA Kernel for Synthesis
145
+
146
+ You can apply the fast CUDA inference kernel by using a parameter `use_cuda_kernel` when instantiating BigVGAN:
147
+
148
+ ```python
149
+ generator = BigVGAN(h, use_cuda_kernel=True)
150
+ ```
151
+
152
+ You can also pass `--use_cuda_kernel` to `inference.py` and `inference_e2e.py` to enable this feature.
153
+
154
+ When applied for the first time, it builds the kernel using `nvcc` and `ninja`. If the build succeeds, the kernel is saved to `alias_free_activation/cuda/build` and the model automatically loads the kernel. The codebase has been tested using CUDA `12.1`.
155
+
156
+ Please make sure that both are installed in your system and `nvcc` installed in your system matches the version your PyTorch build is using.
157
+
158
+ We recommend running `test_cuda_vs_torch_model.py` first to build and check the correctness of the CUDA kernel. See below example command and its output, where it returns `[Success] test CUDA fused vs. plain torch BigVGAN inference`:
159
+
160
+ ```python
161
+ python tests/test_cuda_vs_torch_model.py \
162
+ --checkpoint_file /path/to/your/bigvgan_generator.pt
163
+ ```
164
+
165
+ ```shell
166
+ loading plain Pytorch BigVGAN
167
+ ...
168
+ loading CUDA kernel BigVGAN with auto-build
169
+ Detected CUDA files, patching ldflags
170
+ Emitting ninja build file /path/to/your/BigVGAN/alias_free_activation/cuda/build/build.ninja..
171
+ Building extension module anti_alias_activation_cuda...
172
+ ...
173
+ Loading extension module anti_alias_activation_cuda...
174
+ ...
175
+ Loading '/path/to/your/bigvgan_generator.pt'
176
+ ...
177
+ [Success] test CUDA fused vs. plain torch BigVGAN inference
178
+ > mean_difference=0.0007238413265440613
179
+ ...
180
+ ```
181
+
182
+ If you see `[Fail] test CUDA fused vs. plain torch BigVGAN inference`, it means that the CUDA kernel inference is incorrect. Please check if `nvcc` installed in your system is compatible with your PyTorch version.
183
+
184
+ ## Pretrained Models
185
+
186
+ We provide the [pretrained models on Hugging Face Collections](https://huggingface.co/collections/nvidia/bigvgan-66959df3d97fd7d98d97dc9a).
187
+ One can download the checkpoints of the generator weight (named `bigvgan_generator.pt`) and its discriminator/optimizer states (named `bigvgan_discriminator_optimizer.pt`) within the listed model repositories.
188
+
189
+ | Model Name | Sampling Rate | Mel band | fmax | Upsampling Ratio | Params | Dataset | Steps | Fine-Tuned |
190
+ |:--------------------------------------------------------------------------------------------------------:|:-------------:|:--------:|:-----:|:----------------:|:------:|:--------------------------:|:-----:|:----------:|
191
+ | [bigvgan_v2_44khz_128band_512x](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_512x) | 44 kHz | 128 | 22050 | 512 | 122M | Large-scale Compilation | 5M | No |
192
+ | [bigvgan_v2_44khz_128band_256x](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_256x) | 44 kHz | 128 | 22050 | 256 | 112M | Large-scale Compilation | 5M | No |
193
+ | [bigvgan_v2_24khz_100band_256x](https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x) | 24 kHz | 100 | 12000 | 256 | 112M | Large-scale Compilation | 5M | No |
194
+ | [bigvgan_v2_22khz_80band_256x](https://huggingface.co/nvidia/bigvgan_v2_22khz_80band_256x) | 22 kHz | 80 | 11025 | 256 | 112M | Large-scale Compilation | 5M | No |
195
+ | [bigvgan_v2_22khz_80band_fmax8k_256x](https://huggingface.co/nvidia/bigvgan_v2_22khz_80band_fmax8k_256x) | 22 kHz | 80 | 8000 | 256 | 112M | Large-scale Compilation | 5M | No |
196
+ | [bigvgan_24khz_100band](https://huggingface.co/nvidia/bigvgan_24khz_100band) | 24 kHz | 100 | 12000 | 256 | 112M | LibriTTS | 5M | No |
197
+ | [bigvgan_base_24khz_100band](https://huggingface.co/nvidia/bigvgan_base_24khz_100band) | 24 kHz | 100 | 12000 | 256 | 14M | LibriTTS | 5M | No |
198
+ | [bigvgan_22khz_80band](https://huggingface.co/nvidia/bigvgan_22khz_80band) | 22 kHz | 80 | 8000 | 256 | 112M | LibriTTS + VCTK + LJSpeech | 5M | No |
199
+ | [bigvgan_base_22khz_80band](https://huggingface.co/nvidia/bigvgan_base_22khz_80band) | 22 kHz | 80 | 8000 | 256 | 14M | LibriTTS + VCTK + LJSpeech | 5M | No |
200
+
201
+ The paper results are based on the original 24kHz BigVGAN models (`bigvgan_24khz_100band` and `bigvgan_base_24khz_100band`) trained on LibriTTS dataset.
202
+ We also provide 22kHz BigVGAN models with band-limited setup (i.e., fmax=8000) for TTS applications.
203
+ Note that the checkpoints use `snakebeta` activation with log scale parameterization, which have the best overall quality.
204
+
205
+ You can fine-tune the models by:
206
+
207
+ 1. downloading the checkpoints (both the generator weight and its discriminator/optimizer states)
208
+ 2. resuming training using your audio dataset by specifying `--checkpoint_path` that includes the checkpoints when launching `train.py`
209
+
210
+ ## Training Details of BigVGAN-v2
211
+
212
+ Comapred to the original BigVGAN, the pretrained checkpoints of BigVGAN-v2 used `batch_size=32` with a longer `segment_size=65536` and are trained using 8 A100 GPUs.
213
+
214
+ Note that the BigVGAN-v2 `json` config files in `./configs` use `batch_size=4` as default to fit in a single A100 GPU for training. You can fine-tune the models adjusting `batch_size` depending on your GPUs.
215
+
216
+ When training BigVGAN-v2 from scratch with small batch size, it can potentially encounter the early divergence problem mentioned in the paper. In such case, we recommend lowering the `clip_grad_norm` value (e.g. `100`) for the early training iterations (e.g. 20000 steps) and increase the value to the default `500`.
217
+
218
+ ## Evaluation Results of BigVGAN-v2
219
+
220
+ Below are the objective results of the 24kHz model (`bigvgan_v2_24khz_100band_256x`) obtained from the LibriTTS `dev` sets. BigVGAN-v2 shows noticeable improvements of the metrics. The model also exhibits reduced perceptual artifacts, especially for non-speech audio.
221
+
222
+ | Model | Dataset | Steps | PESQ(↑) | M-STFT(↓) | MCD(↓) | Periodicity(↓) | V/UV F1(↑) |
223
+ |:----------:|:-----------------------:|:-----:|:---------:|:----------:|:----------:|:--------------:|:----------:|
224
+ | BigVGAN | LibriTTS | 1M | 4.027 | 0.7997 | 0.3745 | 0.1018 | 0.9598 |
225
+ | BigVGAN | LibriTTS | 5M | 4.256 | 0.7409 | 0.2988 | 0.0809 | 0.9698 |
226
+ | BigVGAN-v2 | Large-scale Compilation | 3M | 4.359 | 0.7134 | 0.3060 | 0.0621 | 0.9777 |
227
+ | BigVGAN-v2 | Large-scale Compilation | 5M | **4.362** | **0.7026** | **0.2903** | **0.0593** | **0.9793** |
228
+
229
+ ## Speed Benchmark
230
+
231
+ Below are the speed and VRAM usage benchmark results of BigVGAN from `tests/test_cuda_vs_torch_model.py`, using `bigvgan_v2_24khz_100band_256x` as a reference model.
232
+
233
+ | GPU | num_mel_frame | use_cuda_kernel | Speed (kHz) | Real-time Factor | VRAM (GB) |
234
+ |:--------------------------:|:-------------:|:---------------:|:-----------:|:----------------:|:---------:|
235
+ | NVIDIA A100 | 256 | False | 1672.1 | 69.7x | 1.3 |
236
+ | | | True | 3916.5 | 163.2x | 1.3 |
237
+ | | 2048 | False | 1899.6 | 79.2x | 1.7 |
238
+ | | | True | 5330.1 | 222.1x | 1.7 |
239
+ | | 16384 | False | 1973.8 | 82.2x | 5.0 |
240
+ | | | True | 5761.7 | 240.1x | 4.4 |
241
+ | NVIDIA GeForce RTX 3080 | 256 | False | 841.1 | 35.0x | 1.3 |
242
+ | | | True | 1598.1 | 66.6x | 1.3 |
243
+ | | 2048 | False | 929.9 | 38.7x | 1.7 |
244
+ | | | True | 1971.3 | 82.1x | 1.6 |
245
+ | | 16384 | False | 943.4 | 39.3x | 5.0 |
246
+ | | | True | 2026.5 | 84.4x | 3.9 |
247
+ | NVIDIA GeForce RTX 2080 Ti | 256 | False | 515.6 | 21.5x | 1.3 |
248
+ | | | True | 811.3 | 33.8x | 1.3 |
249
+ | | 2048 | False | 576.5 | 24.0x | 1.7 |
250
+ | | | True | 1023.0 | 42.6x | 1.5 |
251
+ | | 16384 | False | 589.4 | 24.6x | 5.0 |
252
+ | | | True | 1068.1 | 44.5x | 3.2 |
253
+
254
+ ## Acknowledgements
255
+
256
+ We thank Vijay Anand Korthikanti and Kevin J. Shih for their generous support in implementing the CUDA kernel for inference.
257
+
258
+ ## References
259
+
260
+ - [HiFi-GAN](https://github.com/jik876/hifi-gan) (for generator and multi-period discriminator)
261
+ - [Snake](https://github.com/EdwardDixon/snake) (for periodic activation)
262
+ - [Alias-free-torch](https://github.com/junjun3518/alias-free-torch) (for anti-aliasing)
263
+ - [Julius](https://github.com/adefossez/julius) (for low-pass filter)
264
+ - [UnivNet](https://github.com/mindslab-ai/univnet) (for multi-resolution discriminator)
265
+ - [descript-audio-codec](https://github.com/descriptinc/descript-audio-codec) and [vocos](https://github.com/gemelo-ai/vocos) (for multi-band multi-scale STFT discriminator and multi-scale mel spectrogram loss)
266
+ - [Amphion](https://github.com/open-mmlab/Amphion) (for multi-scale sub-band CQT discriminator)
GPT_SoVITS/BigVGAN/activations.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
2
+ # LICENSE is in incl_licenses directory.
3
+
4
+ import torch
5
+ from torch import nn, sin, pow
6
+ from torch.nn import Parameter
7
+
8
+
9
+ class Snake(nn.Module):
10
+ """
11
+ Implementation of a sine-based periodic activation function
12
+ Shape:
13
+ - Input: (B, C, T)
14
+ - Output: (B, C, T), same shape as the input
15
+ Parameters:
16
+ - alpha - trainable parameter
17
+ References:
18
+ - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
19
+ https://arxiv.org/abs/2006.08195
20
+ Examples:
21
+ >>> a1 = snake(256)
22
+ >>> x = torch.randn(256)
23
+ >>> x = a1(x)
24
+ """
25
+
26
+ def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
27
+ """
28
+ Initialization.
29
+ INPUT:
30
+ - in_features: shape of the input
31
+ - alpha: trainable parameter
32
+ alpha is initialized to 1 by default, higher values = higher-frequency.
33
+ alpha will be trained along with the rest of your model.
34
+ """
35
+ super(Snake, self).__init__()
36
+ self.in_features = in_features
37
+
38
+ # Initialize alpha
39
+ self.alpha_logscale = alpha_logscale
40
+ if self.alpha_logscale: # Log scale alphas initialized to zeros
41
+ self.alpha = Parameter(torch.zeros(in_features) * alpha)
42
+ else: # Linear scale alphas initialized to ones
43
+ self.alpha = Parameter(torch.ones(in_features) * alpha)
44
+
45
+ self.alpha.requires_grad = alpha_trainable
46
+
47
+ self.no_div_by_zero = 0.000000001
48
+
49
+ def forward(self, x):
50
+ """
51
+ Forward pass of the function.
52
+ Applies the function to the input elementwise.
53
+ Snake ∶= x + 1/a * sin^2 (xa)
54
+ """
55
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # Line up with x to [B, C, T]
56
+ if self.alpha_logscale:
57
+ alpha = torch.exp(alpha)
58
+ x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
59
+
60
+ return x
61
+
62
+
63
+ class SnakeBeta(nn.Module):
64
+ """
65
+ A modified Snake function which uses separate parameters for the magnitude of the periodic components
66
+ Shape:
67
+ - Input: (B, C, T)
68
+ - Output: (B, C, T), same shape as the input
69
+ Parameters:
70
+ - alpha - trainable parameter that controls frequency
71
+ - beta - trainable parameter that controls magnitude
72
+ References:
73
+ - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
74
+ https://arxiv.org/abs/2006.08195
75
+ Examples:
76
+ >>> a1 = snakebeta(256)
77
+ >>> x = torch.randn(256)
78
+ >>> x = a1(x)
79
+ """
80
+
81
+ def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
82
+ """
83
+ Initialization.
84
+ INPUT:
85
+ - in_features: shape of the input
86
+ - alpha - trainable parameter that controls frequency
87
+ - beta - trainable parameter that controls magnitude
88
+ alpha is initialized to 1 by default, higher values = higher-frequency.
89
+ beta is initialized to 1 by default, higher values = higher-magnitude.
90
+ alpha will be trained along with the rest of your model.
91
+ """
92
+ super(SnakeBeta, self).__init__()
93
+ self.in_features = in_features
94
+
95
+ # Initialize alpha
96
+ self.alpha_logscale = alpha_logscale
97
+ if self.alpha_logscale: # Log scale alphas initialized to zeros
98
+ self.alpha = Parameter(torch.zeros(in_features) * alpha)
99
+ self.beta = Parameter(torch.zeros(in_features) * alpha)
100
+ else: # Linear scale alphas initialized to ones
101
+ self.alpha = Parameter(torch.ones(in_features) * alpha)
102
+ self.beta = Parameter(torch.ones(in_features) * alpha)
103
+
104
+ self.alpha.requires_grad = alpha_trainable
105
+ self.beta.requires_grad = alpha_trainable
106
+
107
+ self.no_div_by_zero = 0.000000001
108
+
109
+ def forward(self, x):
110
+ """
111
+ Forward pass of the function.
112
+ Applies the function to the input elementwise.
113
+ SnakeBeta ∶= x + 1/b * sin^2 (xa)
114
+ """
115
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # Line up with x to [B, C, T]
116
+ beta = self.beta.unsqueeze(0).unsqueeze(-1)
117
+ if self.alpha_logscale:
118
+ alpha = torch.exp(alpha)
119
+ beta = torch.exp(beta)
120
+ x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
121
+
122
+ return x
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/__init__.py ADDED
File without changes
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/activation1d.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 NVIDIA CORPORATION.
2
+ # Licensed under the MIT license.
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from alias_free_activation.torch.resample import UpSample1d, DownSample1d
7
+
8
+ # load fused CUDA kernel: this enables importing anti_alias_activation_cuda
9
+ from alias_free_activation.cuda import load
10
+
11
+ anti_alias_activation_cuda = load.load()
12
+
13
+
14
+ class FusedAntiAliasActivation(torch.autograd.Function):
15
+ """
16
+ Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs.
17
+ The hyperparameters are hard-coded in the kernel to maximize speed.
18
+ NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters.
19
+ """
20
+
21
+ @staticmethod
22
+ def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta):
23
+ activation_results = anti_alias_activation_cuda.forward(inputs, up_ftr, down_ftr, alpha, beta)
24
+
25
+ return activation_results
26
+
27
+ @staticmethod
28
+ def backward(ctx, output_grads):
29
+ raise NotImplementedError
30
+ return output_grads, None, None
31
+
32
+
33
+ class Activation1d(nn.Module):
34
+ def __init__(
35
+ self,
36
+ activation,
37
+ up_ratio: int = 2,
38
+ down_ratio: int = 2,
39
+ up_kernel_size: int = 12,
40
+ down_kernel_size: int = 12,
41
+ fused: bool = True,
42
+ ):
43
+ super().__init__()
44
+ self.up_ratio = up_ratio
45
+ self.down_ratio = down_ratio
46
+ self.act = activation
47
+ self.upsample = UpSample1d(up_ratio, up_kernel_size)
48
+ self.downsample = DownSample1d(down_ratio, down_kernel_size)
49
+
50
+ self.fused = fused # Whether to use fused CUDA kernel or not
51
+
52
+ def forward(self, x):
53
+ if not self.fused:
54
+ x = self.upsample(x)
55
+ x = self.act(x)
56
+ x = self.downsample(x)
57
+ return x
58
+ else:
59
+ if self.act.__class__.__name__ == "Snake":
60
+ beta = self.act.alpha.data # Snake uses same params for alpha and beta
61
+ else:
62
+ beta = self.act.beta.data # Snakebeta uses different params for alpha and beta
63
+ alpha = self.act.alpha.data
64
+ if not self.act.alpha_logscale: # Exp baked into cuda kernel, cancel it out with a log
65
+ alpha = torch.log(alpha)
66
+ beta = torch.log(beta)
67
+
68
+ x = FusedAntiAliasActivation.apply(x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta)
69
+ return x
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /* coding=utf-8
2
+ * Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
3
+ *
4
+ * Licensed under the Apache License, Version 2.0 (the "License");
5
+ * you may not use this file except in compliance with the License.
6
+ * You may obtain a copy of the License at
7
+ *
8
+ * http://www.apache.org/licenses/LICENSE-2.0
9
+ *
10
+ * Unless required by applicable law or agreed to in writing, software
11
+ * distributed under the License is distributed on an "AS IS" BASIS,
12
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ * See the License for the specific language governing permissions and
14
+ * limitations under the License.
15
+ */
16
+
17
+ #include <torch/extension.h>
18
+
19
+ extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta);
20
+
21
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
22
+ m.def("forward", &fwd_cuda, "Anti-Alias Activation forward (CUDA)");
23
+ }
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /* coding=utf-8
2
+ * Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
3
+ *
4
+ * Licensed under the Apache License, Version 2.0 (the "License");
5
+ * you may not use this file except in compliance with the License.
6
+ * You may obtain a copy of the License at
7
+ *
8
+ * http://www.apache.org/licenses/LICENSE-2.0
9
+ *
10
+ * Unless required by applicable law or agreed to in writing, software
11
+ * distributed under the License is distributed on an "AS IS" BASIS,
12
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ * See the License for the specific language governing permissions and
14
+ * limitations under the License.
15
+ */
16
+
17
+ #include <ATen/ATen.h>
18
+ #include <cuda.h>
19
+ #include <cuda_runtime.h>
20
+ #include <cuda_fp16.h>
21
+ #include <cuda_profiler_api.h>
22
+ #include <ATen/cuda/CUDAContext.h>
23
+ #include <torch/extension.h>
24
+ #include "type_shim.h"
25
+ #include <assert.h>
26
+ #include <cfloat>
27
+ #include <limits>
28
+ #include <stdint.h>
29
+ #include <c10/macros/Macros.h>
30
+
31
+ namespace
32
+ {
33
+ // Hard-coded hyperparameters
34
+ // WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
35
+ constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
36
+ constexpr int BUFFER_SIZE = 32;
37
+ constexpr int FILTER_SIZE = 12;
38
+ constexpr int HALF_FILTER_SIZE = 6;
39
+ constexpr int UPSAMPLE_REPLICATION_PAD = 5; // 5 on each side, matching torch impl
40
+ constexpr int DOWNSAMPLE_REPLICATION_PAD_LEFT = 5; // matching torch impl
41
+ constexpr int DOWNSAMPLE_REPLICATION_PAD_RIGHT = 6; // matching torch impl
42
+
43
+ template <typename input_t, typename output_t, typename acc_t>
44
+ __global__ void anti_alias_activation_forward(
45
+ output_t *dst,
46
+ const input_t *src,
47
+ const input_t *up_ftr,
48
+ const input_t *down_ftr,
49
+ const input_t *alpha,
50
+ const input_t *beta,
51
+ int batch_size,
52
+ int channels,
53
+ int seq_len)
54
+ {
55
+ // Up and downsample filters
56
+ input_t up_filter[FILTER_SIZE];
57
+ input_t down_filter[FILTER_SIZE];
58
+
59
+ // Load data from global memory including extra indices reserved for replication paddings
60
+ input_t elements[2 * FILTER_SIZE + 2 * BUFFER_SIZE + 2 * UPSAMPLE_REPLICATION_PAD] = {0};
61
+ input_t intermediates[2 * FILTER_SIZE + 2 * BUFFER_SIZE + DOWNSAMPLE_REPLICATION_PAD_LEFT + DOWNSAMPLE_REPLICATION_PAD_RIGHT] = {0};
62
+
63
+ // Output stores downsampled output before writing to dst
64
+ output_t output[BUFFER_SIZE];
65
+
66
+ // blockDim/threadIdx = (128, 1, 1)
67
+ // gridDim/blockIdx = (seq_blocks, channels, batches)
68
+ int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
69
+ int local_offset = threadIdx.x * BUFFER_SIZE;
70
+ int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;
71
+
72
+ // intermediate have double the seq_len
73
+ int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;
74
+ int intermediate_seq_offset = blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_local_offset;
75
+
76
+ // Get values needed for replication padding before moving pointer
77
+ const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
78
+ input_t seq_left_most_value = right_most_pntr[0];
79
+ input_t seq_right_most_value = right_most_pntr[seq_len - 1];
80
+
81
+ // Move src and dst pointers
82
+ src += block_offset + local_offset;
83
+ dst += block_offset + local_offset;
84
+
85
+ // Alpha and beta values for snake activatons. Applies exp by default
86
+ alpha = alpha + blockIdx.y;
87
+ input_t alpha_val = expf(alpha[0]);
88
+ beta = beta + blockIdx.y;
89
+ input_t beta_val = expf(beta[0]);
90
+
91
+ #pragma unroll
92
+ for (int it = 0; it < FILTER_SIZE; it += 1)
93
+ {
94
+ up_filter[it] = up_ftr[it];
95
+ down_filter[it] = down_ftr[it];
96
+ }
97
+
98
+ // Apply replication padding for upsampling, matching torch impl
99
+ #pragma unroll
100
+ for (int it = -HALF_FILTER_SIZE; it < BUFFER_SIZE + HALF_FILTER_SIZE; it += 1)
101
+ {
102
+ int element_index = seq_offset + it; // index for element
103
+ if ((element_index < 0) && (element_index >= -UPSAMPLE_REPLICATION_PAD))
104
+ {
105
+ elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_left_most_value;
106
+ }
107
+ if ((element_index >= seq_len) && (element_index < seq_len + UPSAMPLE_REPLICATION_PAD))
108
+ {
109
+ elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_right_most_value;
110
+ }
111
+ if ((element_index >= 0) && (element_index < seq_len))
112
+ {
113
+ elements[2 * (HALF_FILTER_SIZE + it)] = 2 * src[it];
114
+ }
115
+ }
116
+
117
+ // Apply upsampling strided convolution and write to intermediates. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT for replication padding of the downsampilng conv later
118
+ #pragma unroll
119
+ for (int it = 0; it < (2 * BUFFER_SIZE + 2 * FILTER_SIZE); it += 1)
120
+ {
121
+ input_t acc = 0.0;
122
+ int element_index = intermediate_seq_offset + it; // index for intermediate
123
+ #pragma unroll
124
+ for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
125
+ {
126
+ if ((element_index + f_idx) >= 0)
127
+ {
128
+ acc += up_filter[f_idx] * elements[it + f_idx];
129
+ }
130
+ }
131
+ intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] = acc;
132
+ }
133
+
134
+ // Apply activation function. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT and DOWNSAMPLE_REPLICATION_PAD_RIGHT for replication padding of the downsampilng conv later
135
+ double no_div_by_zero = 0.000000001;
136
+ #pragma unroll
137
+ for (int it = 0; it < 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it += 1)
138
+ {
139
+ intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] += (1.0 / (beta_val + no_div_by_zero)) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val);
140
+ }
141
+
142
+ // Apply replication padding before downsampling conv from intermediates
143
+ #pragma unroll
144
+ for (int it = 0; it < DOWNSAMPLE_REPLICATION_PAD_LEFT; it += 1)
145
+ {
146
+ intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT];
147
+ }
148
+ #pragma unroll
149
+ for (int it = DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it < DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE + DOWNSAMPLE_REPLICATION_PAD_RIGHT; it += 1)
150
+ {
151
+ intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE - 1];
152
+ }
153
+
154
+ // Apply downsample strided convolution (assuming stride=2) from intermediates
155
+ #pragma unroll
156
+ for (int it = 0; it < BUFFER_SIZE; it += 1)
157
+ {
158
+ input_t acc = 0.0;
159
+ #pragma unroll
160
+ for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
161
+ {
162
+ // Add constant DOWNSAMPLE_REPLICATION_PAD_RIGHT to match torch implementation
163
+ acc += down_filter[f_idx] * intermediates[it * 2 + f_idx + DOWNSAMPLE_REPLICATION_PAD_RIGHT];
164
+ }
165
+ output[it] = acc;
166
+ }
167
+
168
+ // Write output to dst
169
+ #pragma unroll
170
+ for (int it = 0; it < BUFFER_SIZE; it += ELEMENTS_PER_LDG_STG)
171
+ {
172
+ int element_index = seq_offset + it;
173
+ if (element_index < seq_len)
174
+ {
175
+ dst[it] = output[it];
176
+ }
177
+ }
178
+
179
+ }
180
+
181
+ template <typename input_t, typename output_t, typename acc_t>
182
+ void dispatch_anti_alias_activation_forward(
183
+ output_t *dst,
184
+ const input_t *src,
185
+ const input_t *up_ftr,
186
+ const input_t *down_ftr,
187
+ const input_t *alpha,
188
+ const input_t *beta,
189
+ int batch_size,
190
+ int channels,
191
+ int seq_len)
192
+ {
193
+ if (seq_len == 0)
194
+ {
195
+ return;
196
+ }
197
+ else
198
+ {
199
+ // Use 128 threads per block to maximimize gpu utilization
200
+ constexpr int threads_per_block = 128;
201
+ constexpr int seq_len_per_block = 4096;
202
+ int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
203
+ dim3 blocks(blocks_per_seq_len, channels, batch_size);
204
+ dim3 threads(threads_per_block, 1, 1);
205
+
206
+ anti_alias_activation_forward<input_t, output_t, acc_t>
207
+ <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, up_ftr, down_ftr, alpha, beta, batch_size, channels, seq_len);
208
+ }
209
+ }
210
+ }
211
+
212
+ extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta)
213
+ {
214
+ // Input is a 3d tensor with dimensions [batches, channels, seq_len]
215
+ const int batches = input.size(0);
216
+ const int channels = input.size(1);
217
+ const int seq_len = input.size(2);
218
+
219
+ // Output
220
+ auto act_options = input.options().requires_grad(false);
221
+
222
+ torch::Tensor anti_alias_activation_results =
223
+ torch::empty({batches, channels, seq_len}, act_options);
224
+
225
+ void *input_ptr = static_cast<void *>(input.data_ptr());
226
+ void *up_filter_ptr = static_cast<void *>(up_filter.data_ptr());
227
+ void *down_filter_ptr = static_cast<void *>(down_filter.data_ptr());
228
+ void *alpha_ptr = static_cast<void *>(alpha.data_ptr());
229
+ void *beta_ptr = static_cast<void *>(beta.data_ptr());
230
+ void *anti_alias_activation_results_ptr = static_cast<void *>(anti_alias_activation_results.data_ptr());
231
+
232
+ DISPATCH_FLOAT_HALF_AND_BFLOAT(
233
+ input.scalar_type(),
234
+ "dispatch anti alias activation_forward",
235
+ dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float>(
236
+ reinterpret_cast<scalar_t *>(anti_alias_activation_results_ptr),
237
+ reinterpret_cast<const scalar_t *>(input_ptr),
238
+ reinterpret_cast<const scalar_t *>(up_filter_ptr),
239
+ reinterpret_cast<const scalar_t *>(down_filter_ptr),
240
+ reinterpret_cast<const scalar_t *>(alpha_ptr),
241
+ reinterpret_cast<const scalar_t *>(beta_ptr),
242
+ batches,
243
+ channels,
244
+ seq_len););
245
+ return anti_alias_activation_results;
246
+ }
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/compat.h ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /* coding=utf-8
2
+ * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
3
+ *
4
+ * Licensed under the Apache License, Version 2.0 (the "License");
5
+ * you may not use this file except in compliance with the License.
6
+ * You may obtain a copy of the License at
7
+ *
8
+ * http://www.apache.org/licenses/LICENSE-2.0
9
+ *
10
+ * Unless required by applicable law or agreed to in writing, software
11
+ * distributed under the License is distributed on an "AS IS" BASIS,
12
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ * See the License for the specific language governing permissions and
14
+ * limitations under the License.
15
+ */
16
+
17
+ /*This code is copied fron NVIDIA apex:
18
+ * https://github.com/NVIDIA/apex
19
+ * with minor changes. */
20
+
21
+ #ifndef TORCH_CHECK
22
+ #define TORCH_CHECK AT_CHECK
23
+ #endif
24
+
25
+ #ifdef VERSION_GE_1_3
26
+ #define DATA_PTR data_ptr
27
+ #else
28
+ #define DATA_PTR data
29
+ #endif
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/load.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 NVIDIA CORPORATION.
2
+ # Licensed under the MIT license.
3
+
4
+ import os
5
+ import pathlib
6
+ import subprocess
7
+
8
+ from torch.utils import cpp_extension
9
+
10
+ """
11
+ Setting this param to a list has a problem of generating different compilation commands (with diferent order of architectures) and leading to recompilation of fused kernels.
12
+ Set it to empty stringo avoid recompilation and assign arch flags explicity in extra_cuda_cflags below
13
+ """
14
+ os.environ["TORCH_CUDA_ARCH_LIST"] = ""
15
+
16
+
17
+ def load():
18
+ # Check if cuda 11 is installed for compute capability 8.0
19
+ cc_flag = []
20
+ _, bare_metal_major, _ = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
21
+ if int(bare_metal_major) >= 11:
22
+ cc_flag.append("-gencode")
23
+ cc_flag.append("arch=compute_80,code=sm_80")
24
+
25
+ # Build path
26
+ srcpath = pathlib.Path(__file__).parent.absolute()
27
+ buildpath = srcpath / "build"
28
+ _create_build_dir(buildpath)
29
+
30
+ # Helper function to build the kernels.
31
+ def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
32
+ return cpp_extension.load(
33
+ name=name,
34
+ sources=sources,
35
+ build_directory=buildpath,
36
+ extra_cflags=[
37
+ "-O3",
38
+ ],
39
+ extra_cuda_cflags=[
40
+ "-O3",
41
+ "-gencode",
42
+ "arch=compute_70,code=sm_70",
43
+ "--use_fast_math",
44
+ ]
45
+ + extra_cuda_flags
46
+ + cc_flag,
47
+ verbose=True,
48
+ )
49
+
50
+ extra_cuda_flags = [
51
+ "-U__CUDA_NO_HALF_OPERATORS__",
52
+ "-U__CUDA_NO_HALF_CONVERSIONS__",
53
+ "--expt-relaxed-constexpr",
54
+ "--expt-extended-lambda",
55
+ ]
56
+
57
+ sources = [
58
+ srcpath / "anti_alias_activation.cpp",
59
+ srcpath / "anti_alias_activation_cuda.cu",
60
+ ]
61
+ anti_alias_activation_cuda = _cpp_extention_load_helper("anti_alias_activation_cuda", sources, extra_cuda_flags)
62
+
63
+ return anti_alias_activation_cuda
64
+
65
+
66
+ def _get_cuda_bare_metal_version(cuda_dir):
67
+ raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
68
+ output = raw_output.split()
69
+ release_idx = output.index("release") + 1
70
+ release = output[release_idx].split(".")
71
+ bare_metal_major = release[0]
72
+ bare_metal_minor = release[1][0]
73
+
74
+ return raw_output, bare_metal_major, bare_metal_minor
75
+
76
+
77
+ def _create_build_dir(buildpath):
78
+ try:
79
+ os.mkdir(buildpath)
80
+ except OSError:
81
+ if not os.path.isdir(buildpath):
82
+ print(f"Creation of the build directory {buildpath} failed")
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/type_shim.h ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /* coding=utf-8
2
+ * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
3
+ *
4
+ * Licensed under the Apache License, Version 2.0 (the "License");
5
+ * you may not use this file except in compliance with the License.
6
+ * You may obtain a copy of the License at
7
+ *
8
+ * http://www.apache.org/licenses/LICENSE-2.0
9
+ *
10
+ * Unless required by applicable law or agreed to in writing, software
11
+ * distributed under the License is distributed on an "AS IS" BASIS,
12
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ * See the License for the specific language governing permissions and
14
+ * limitations under the License.
15
+ */
16
+
17
+ #include <ATen/ATen.h>
18
+ #include "compat.h"
19
+
20
+ #define DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, ...) \
21
+ switch (TYPE) \
22
+ { \
23
+ case at::ScalarType::Float: \
24
+ { \
25
+ using scalar_t = float; \
26
+ __VA_ARGS__; \
27
+ break; \
28
+ } \
29
+ case at::ScalarType::Half: \
30
+ { \
31
+ using scalar_t = at::Half; \
32
+ __VA_ARGS__; \
33
+ break; \
34
+ } \
35
+ case at::ScalarType::BFloat16: \
36
+ { \
37
+ using scalar_t = at::BFloat16; \
38
+ __VA_ARGS__; \
39
+ break; \
40
+ } \
41
+ default: \
42
+ AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
43
+ }
44
+
45
+ #define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
46
+ switch (TYPEIN) \
47
+ { \
48
+ case at::ScalarType::Float: \
49
+ { \
50
+ using scalar_t_in = float; \
51
+ switch (TYPEOUT) \
52
+ { \
53
+ case at::ScalarType::Float: \
54
+ { \
55
+ using scalar_t_out = float; \
56
+ __VA_ARGS__; \
57
+ break; \
58
+ } \
59
+ case at::ScalarType::Half: \
60
+ { \
61
+ using scalar_t_out = at::Half; \
62
+ __VA_ARGS__; \
63
+ break; \
64
+ } \
65
+ case at::ScalarType::BFloat16: \
66
+ { \
67
+ using scalar_t_out = at::BFloat16; \
68
+ __VA_ARGS__; \
69
+ break; \
70
+ } \
71
+ default: \
72
+ AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
73
+ } \
74
+ break; \
75
+ } \
76
+ case at::ScalarType::Half: \
77
+ { \
78
+ using scalar_t_in = at::Half; \
79
+ using scalar_t_out = at::Half; \
80
+ __VA_ARGS__; \
81
+ break; \
82
+ } \
83
+ case at::ScalarType::BFloat16: \
84
+ { \
85
+ using scalar_t_in = at::BFloat16; \
86
+ using scalar_t_out = at::BFloat16; \
87
+ __VA_ARGS__; \
88
+ break; \
89
+ } \
90
+ default: \
91
+ AT_ERROR(#NAME, " not implemented for '", toString(TYPEIN), "'"); \
92
+ }
GPT_SoVITS/BigVGAN/alias_free_activation/torch/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
2
+ # LICENSE is in incl_licenses directory.
3
+
4
+ from .filter import *
5
+ from .resample import *
6
+ from .act import *
GPT_SoVITS/BigVGAN/alias_free_activation/torch/act.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
2
+ # LICENSE is in incl_licenses directory.
3
+
4
+ import torch.nn as nn
5
+ from .resample import UpSample1d, DownSample1d
6
+
7
+
8
+ class Activation1d(nn.Module):
9
+ def __init__(
10
+ self,
11
+ activation,
12
+ up_ratio: int = 2,
13
+ down_ratio: int = 2,
14
+ up_kernel_size: int = 12,
15
+ down_kernel_size: int = 12,
16
+ ):
17
+ super().__init__()
18
+ self.up_ratio = up_ratio
19
+ self.down_ratio = down_ratio
20
+ self.act = activation
21
+ self.upsample = UpSample1d(up_ratio, up_kernel_size)
22
+ self.downsample = DownSample1d(down_ratio, down_kernel_size)
23
+
24
+ # x: [B,C,T]
25
+ def forward(self, x):
26
+ x = self.upsample(x)
27
+ x = self.act(x)
28
+ x = self.downsample(x)
29
+
30
+ return x
GPT_SoVITS/BigVGAN/alias_free_activation/torch/filter.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
2
+ # LICENSE is in incl_licenses directory.
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ import math
8
+
9
+ if "sinc" in dir(torch):
10
+ sinc = torch.sinc
11
+ else:
12
+ # This code is adopted from adefossez's julius.core.sinc under the MIT License
13
+ # https://adefossez.github.io/julius/julius/core.html
14
+ # LICENSE is in incl_licenses directory.
15
+ def sinc(x: torch.Tensor):
16
+ """
17
+ Implementation of sinc, i.e. sin(pi * x) / (pi * x)
18
+ __Warning__: Different to julius.sinc, the input is multiplied by `pi`!
19
+ """
20
+ return torch.where(
21
+ x == 0,
22
+ torch.tensor(1.0, device=x.device, dtype=x.dtype),
23
+ torch.sin(math.pi * x) / math.pi / x,
24
+ )
25
+
26
+
27
+ # This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
28
+ # https://adefossez.github.io/julius/julius/lowpass.html
29
+ # LICENSE is in incl_licenses directory.
30
+ def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
31
+ even = kernel_size % 2 == 0
32
+ half_size = kernel_size // 2
33
+
34
+ # For kaiser window
35
+ delta_f = 4 * half_width
36
+ A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
37
+ if A > 50.0:
38
+ beta = 0.1102 * (A - 8.7)
39
+ elif A >= 21.0:
40
+ beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
41
+ else:
42
+ beta = 0.0
43
+ window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
44
+
45
+ # ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
46
+ if even:
47
+ time = torch.arange(-half_size, half_size) + 0.5
48
+ else:
49
+ time = torch.arange(kernel_size) - half_size
50
+ if cutoff == 0:
51
+ filter_ = torch.zeros_like(time)
52
+ else:
53
+ filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
54
+ """
55
+ Normalize filter to have sum = 1, otherwise we will have a small leakage of the constant component in the input signal.
56
+ """
57
+ filter_ /= filter_.sum()
58
+ filter = filter_.view(1, 1, kernel_size)
59
+
60
+ return filter
61
+
62
+
63
+ class LowPassFilter1d(nn.Module):
64
+ def __init__(
65
+ self,
66
+ cutoff=0.5,
67
+ half_width=0.6,
68
+ stride: int = 1,
69
+ padding: bool = True,
70
+ padding_mode: str = "replicate",
71
+ kernel_size: int = 12,
72
+ ):
73
+ """
74
+ kernel_size should be even number for stylegan3 setup, in this implementation, odd number is also possible.
75
+ """
76
+ super().__init__()
77
+ if cutoff < -0.0:
78
+ raise ValueError("Minimum cutoff must be larger than zero.")
79
+ if cutoff > 0.5:
80
+ raise ValueError("A cutoff above 0.5 does not make sense.")
81
+ self.kernel_size = kernel_size
82
+ self.even = kernel_size % 2 == 0
83
+ self.pad_left = kernel_size // 2 - int(self.even)
84
+ self.pad_right = kernel_size // 2
85
+ self.stride = stride
86
+ self.padding = padding
87
+ self.padding_mode = padding_mode
88
+ filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
89
+ self.register_buffer("filter", filter)
90
+
91
+ # Input [B, C, T]
92
+ def forward(self, x):
93
+ _, C, _ = x.shape
94
+
95
+ if self.padding:
96
+ x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
97
+ out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
98
+
99
+ return out