evaltest2 / app.py
wuhp's picture
Create app.py
e9206ba verified
raw
history blame
9.88 kB
# app.py – YOLOv8 Dataset Quality Evaluator for Hugging Face Spaces
"""
Gradio application for evaluating the quality of YOLO‑format object‑detection datasets exported from Roboflow (or any
other labeling tool). The app runs a configurable pipeline of automated checks and returns a structured report plus
visual artefacts that make it easy to spot problems.
Designed for **Hugging Face Spaces**:
* Keep the file name `app.py` (Spaces’ default entry‑point).
* Add a `requirements.txt` (see README) so Spaces installs the right deps.
* The app binds to `0.0.0.0` and picks up the port from the `PORT` env var (set by Spaces).
Checks implemented
------------------
1. **Dataset integrity** – verify that every image has a label file (or an allowed empty‑label exemption) and that each
label file parses correctly.
2. **Class stats / balance** – count instances per class and per‑image instance distribution.
3. **Image quality** – flag blurry, too‑dark or over‑bright images using simple OpenCV heuristics.
4. **Duplicate & near‑duplicate images** – perceptual‑hash pass (fallback) or FastDup if available.
5. **Duplicate boxes** – IoU > 0.9 duplicates in the same image.
6. **Optional model‑assisted label QA** – if the user provides a YOLO weights file, run inference and compute IoU‑based
agreement metrics plus Cleanlab label‑quality scores when the library is installed.
7. **Composite scoring** – combine sub‑scores (with adjustable weights) into a final 0‑100 quality score.
The code is intentionally modular: each check lives in its own function that returns a `dict` of metrics; adding new
checks is as simple as creating another function that follows the same signature and adding it to the `CHECKS` list.
"""
from __future__ import annotations
import imghdr
import json
import os
import shutil
import tempfile
from collections import Counter
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Tuple
from concurrent.futures import ThreadPoolExecutor, as_completed
import gradio as gr
import numpy as np
import pandas as pd
import yaml
from PIL import Image
from tqdm import tqdm
# Optional imports (wrapped so the app still works without them)
try:
import cv2 # type: ignore
except ImportError:
cv2 = None # pragma: no cover
try:
import imagehash # type: ignore
except ImportError:
imagehash = None # pragma: no cover
try:
from ultralytics import YOLO # type: ignore
except ImportError:
YOLO = None # noqa: N806
try:
from cleanlab.object_detection import rank as cl_rank # type: ignore
except ImportError:
cl_rank = None
FASTDUP_AVAILABLE = False # lazy‑loaded if requested
# --------------------------------------------------------------------------------------
# Utility dataclasses
# --------------------------------------------------------------------------------------
@dataclass
class ImageMetrics:
path: Path
width: int
height: int
blur_score: float | None = None
brightness: float | None = None
@property
def aspect_ratio(self) -> float:
return self.width / self.height if self.height else 0
@dataclass
class DuplicateGroup:
hash_val: str
paths: List[Path]
# --------------------------------------------------------------------------------------
# Core helpers
# --------------------------------------------------------------------------------------
def load_yaml(yaml_path: Path) -> Dict:
with yaml_path.open("r", encoding="utf-8") as f:
return yaml.safe_load(f)
def parse_label_file(label_path: Path) -> List[Tuple[int, float, float, float, float]]:
"""Return list of (class_id, x_center, y_center, width, height)."""
entries: List[Tuple[int, float, float, float, float]] = []
with label_path.open("r", encoding="utf-8") as f:
for line in f:
parts = line.strip().split()
if len(parts) != 5:
raise ValueError(f"Malformed label line in {label_path}: {line}")
class_id, *coords = parts
entries.append((int(class_id), *map(float, coords)))
return entries
def guess_image_dirs(root: Path) -> List[Path]:
"""Return potential images sub‑directories under a Roboflow/YOLO export."""
candidates = [
root / "images",
root / "train" / "images",
root / "valid" / "images",
root / "val" / "images",
root / "test" / "images",
]
return [p for p in candidates if p.exists()]
def gather_dataset(root: Path, yaml_path: Path | None = None) -> Tuple[List[Path], List[Path], Dict]:
"""Return (image_paths, label_paths, yaml_dict)."""
if yaml_path is None:
yaml_candidates = list(root.glob("*.yaml"))
if not yaml_candidates:
raise FileNotFoundError("Could not find a YAML config in dataset root; please supply explicitly.")
yaml_path = yaml_candidates[0]
meta = load_yaml(yaml_path)
image_dirs = guess_image_dirs(root)
if not image_dirs:
raise FileNotFoundError("No images directory found under dataset root; expected images/ subfolder(s).")
image_paths: List[Path] = [p for d in image_dirs for p in d.rglob("*.*") if imghdr.what(p) is not None]
label_paths: List[Path] = []
for img_path in image_paths:
# <split>/images/img123.jpg -> <split>/labels/img123.txt
label_path = img_path.parent.parent / "labels" / f"{img_path.stem}.txt"
label_paths.append(label_path)
return image_paths, label_paths, meta
# --------------------------------------------------------------------------------------
# Individual checks
# --------------------------------------------------------------------------------------
def _is_corrupt(img_path: Path) -> bool:
try:
with Image.open(img_path) as im:
im.verify()
return False
except Exception: # noqa: BLE001
return True
def check_integrity(image_paths: List[Path], label_paths: List[Path]) -> Dict:
"""Verify that images and labels exist and are readable."""
missing_labels = [img for img, lbl in zip(image_paths, label_paths) if not lbl.exists()]
missing_images = [lbl for lbl in label_paths if lbl.exists() and not lbl.with_name("images").exists()]
# Parallel corruption check for speed on Spaces CPU boxes
corrupt_images = []
with ThreadPoolExecutor(max_workers=os.cpu_count() or 4) as ex:
futures = {ex.submit(_is_corrupt, p): p for p in image_paths}
for fut in tqdm(as_completed(futures), total=len(futures), desc="Integrity", leave=False):
if fut.result():
corrupt_images.append(futures[fut])
score = 100 - (len(missing_labels) + len(missing_images) + len(corrupt_images)) / max(len(image_paths), 1) * 100
return {
"name": "Integrity",
"score": max(score, 0),
"details": {
"missing_label_files": [str(p) for p in missing_labels],
"missing_image_files": [str(p) for p in missing_images],
"corrupt_images": [str(p) for p in corrupt_images],
},
}
def compute_class_stats(label_paths: List[Path]) -> Dict:
class_counts = Counter()
boxes_per_image = []
for lbl in label_paths:
if not lbl.exists():
continue
boxes = parse_label_file(lbl)
boxes_per_image.append(len(boxes))
class_counts.update([b[0] for b in boxes])
if not class_counts:
return {"name": "Class balance", "score": 0, "details": {"message": "No labels found"}}
max_count, min_count = max(class_counts.values()), min(class_counts.values())
balance_score = min_count / max_count * 100 if max_count else 0
return {
"name": "Class balance",
"score": balance_score,
"details": {
"class_counts": dict(class_counts),
"boxes_per_image_stats": {
"min": int(np.min(boxes_per_image) if boxes_per_image else 0),
"max": int(np.max(boxes_per_image) if boxes_per_image else 0),
"mean": float(np.mean(boxes_per_image) if boxes_per_image else 0),
},
},
}
def image_quality_metrics(image_paths: List[Path], blur_thresh: float = 100.0) -> Dict:
if cv2 is None:
return {"name": "Image quality", "score": 100, "details": {"message": "cv2 not installed – check skipped"}}
blurry, dark, bright = [], [], []
for p in tqdm(image_paths, desc="Image quality", leave=False):
img = cv2.imread(str(p))
if img is None:
continue
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
lap_var = cv2.Laplacian(gray, cv2.CV_64F).var()
brightness = np.mean(gray)
if lap_var < blur_thresh:
blurry.append(p)
if brightness < 25:
dark.append(p)
if brightness > 230:
bright.append(p)
total = len(image_paths)
bad = len(set(blurry + dark + bright))
score = 100 - bad / max(total, 1) * 100
return {
"name": "Image quality",
"score": score,
"details": {
"blurry": [str(p) for p in blurry],
"dark": [str(p) for p in dark],
"bright": [str(p) for p in bright],
},
}
def detect_duplicates(image_paths: List[Path], use_fastdup: bool = False) -> Dict:
if use_fastdup:
global FASTDUP_AVAILABLE
try:
import fastdup # type: ignore
FASTDUP_AVAILABLE = True
except ImportError:
use_fastdup = False
duplicate_groups: List[DuplicateGroup] = []
if use_fastdup and FASTDUP_AVAILABLE and len(image_paths):
fd = fastdup.create(input_dir=str(image_paths[0].parent.parent), work_dir="fastdup_work")
fd.run(num_images=0)
clusters = fd.clusters # type: ignore[attr