Spaces:
Runtime error
Runtime error
| import gc | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| import torchvision | |
| from controlnet_aux import ( | |
| CannyDetector, | |
| ContentShuffleDetector, | |
| HEDdetector, | |
| LineartAnimeDetector, | |
| LineartDetector, | |
| MidasDetector, | |
| MLSDdetector, | |
| NormalBaeDetector, | |
| OpenposeDetector, | |
| PidiNetDetector, | |
| ) | |
| from controlnet_aux.util import HWC3 | |
| from cv_utils import resize_image | |
| from depth_estimator import DepthEstimator | |
| from image_segmentor import ImageSegmentor | |
| from kornia.core import Tensor | |
| # load preprocessor | |
| # HED = HEDdetector.from_pretrained("lllyasviel/Annotators") | |
| Midas = MidasDetector.from_pretrained("lllyasviel/Annotators") | |
| MLSD = MLSDdetector.from_pretrained("lllyasviel/Annotators") | |
| Canny = CannyDetector() | |
| OPENPOSE = OpenposeDetector.from_pretrained("lllyasviel/Annotators") | |
| class Preprocessor: | |
| MODEL_ID = "lllyasviel/Annotators" | |
| def __init__(self): | |
| self.model = None | |
| self.name = "" | |
| def load(self, name: str) -> None: | |
| if name == self.name: | |
| return | |
| if name == "Midas": | |
| self.model = Midas | |
| elif name == "MLSD": | |
| self.model =MLSD | |
| elif name == "Openpose": | |
| self.model = OPENPOSE | |
| elif name == "Canny": | |
| self.model = Canny | |
| else: | |
| raise ValueError | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| self.name = name | |
| def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image: | |
| if self.name == "Canny" or self.name == "MLSD": | |
| detect_resolution = kwargs.pop("detect_resolution") | |
| image_resolution = kwargs.pop("image_resolution", 512) | |
| image = np.array(image) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=detect_resolution) | |
| image = self.model(image, **kwargs) | |
| image = np.array(image) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=image_resolution) | |
| return PIL.Image.fromarray(image).convert('RGB') | |
| else: | |
| detect_resolution = kwargs.pop("detect_resolution", 512) | |
| image_resolution = kwargs.pop("image_resolution", 512) | |
| image = np.array(image) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=detect_resolution) | |
| image = self.model(image, **kwargs) | |
| image = np.array(image) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=image_resolution) | |
| return PIL.Image.fromarray(image) | |