Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,166 +1,213 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import json
|
| 3 |
-
import logging
|
| 4 |
-
import torch
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import spaces
|
| 7 |
-
from diffusers import DiffusionPipeline
|
| 8 |
-
import copy
|
| 9 |
-
import random
|
| 10 |
-
import time
|
| 11 |
-
|
| 12 |
-
# Load LoRAs from JSON file
|
| 13 |
-
with open('loras.json', 'r') as f:
|
| 14 |
-
loras = json.load(f)
|
| 15 |
-
|
| 16 |
-
# Initialize the base model
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
self.
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
#
|
| 93 |
-
with calculateDuration("
|
| 94 |
-
if
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
app.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
import logging
|
| 4 |
+
import torch
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import spaces
|
| 7 |
+
from diffusers import DiffusionPipeline
|
| 8 |
+
import copy
|
| 9 |
+
import random
|
| 10 |
+
import time
|
| 11 |
+
|
| 12 |
+
# Load LoRAs from JSON file
|
| 13 |
+
with open('loras.json', 'r') as f:
|
| 14 |
+
loras = json.load(f)
|
| 15 |
+
|
| 16 |
+
# Initialize the base model
|
| 17 |
+
models = ["camenduru/FLUX.1-dev-diffusers", "black-forest-labs/FLUX.1-schnell"]
|
| 18 |
+
base_model = models[0]
|
| 19 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
| 20 |
+
|
| 21 |
+
MAX_SEED = 2**32-1
|
| 22 |
+
|
| 23 |
+
class calculateDuration:
|
| 24 |
+
def __init__(self, activity_name=""):
|
| 25 |
+
self.activity_name = activity_name
|
| 26 |
+
|
| 27 |
+
def __enter__(self):
|
| 28 |
+
self.start_time = time.time()
|
| 29 |
+
return self
|
| 30 |
+
|
| 31 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
| 32 |
+
self.end_time = time.time()
|
| 33 |
+
self.elapsed_time = self.end_time - self.start_time
|
| 34 |
+
if self.activity_name:
|
| 35 |
+
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
| 36 |
+
else:
|
| 37 |
+
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def update_selection(evt: gr.SelectData, width, height):
|
| 41 |
+
selected_lora = loras[evt.index]
|
| 42 |
+
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
| 43 |
+
lora_repo = selected_lora["repo"]
|
| 44 |
+
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
|
| 45 |
+
if "aspect" in selected_lora:
|
| 46 |
+
if selected_lora["aspect"] == "portrait":
|
| 47 |
+
width = 768
|
| 48 |
+
height = 1024
|
| 49 |
+
elif selected_lora["aspect"] == "landscape":
|
| 50 |
+
width = 1024
|
| 51 |
+
height = 768
|
| 52 |
+
return (
|
| 53 |
+
gr.update(placeholder=new_placeholder),
|
| 54 |
+
updated_text,
|
| 55 |
+
evt.index,
|
| 56 |
+
width,
|
| 57 |
+
height,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
@spaces.GPU(duration=70)
|
| 61 |
+
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
| 62 |
+
pipe.to("cuda")
|
| 63 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 64 |
+
|
| 65 |
+
with calculateDuration("Generating image"):
|
| 66 |
+
# Generate image
|
| 67 |
+
image = pipe(
|
| 68 |
+
prompt=f"{prompt} {trigger_word}",
|
| 69 |
+
num_inference_steps=steps,
|
| 70 |
+
guidance_scale=cfg_scale,
|
| 71 |
+
width=width,
|
| 72 |
+
height=height,
|
| 73 |
+
generator=generator,
|
| 74 |
+
joint_attention_kwargs={"scale": lora_scale},
|
| 75 |
+
).images[0]
|
| 76 |
+
return image
|
| 77 |
+
|
| 78 |
+
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
| 79 |
+
lora_scale, lora_repo, lora_weights, lora_trigger, progress=gr.Progress(track_tqdm=True)):
|
| 80 |
+
if selected_index is None and not lora_repo:
|
| 81 |
+
raise gr.Error("You must select a LoRA before proceeding.")
|
| 82 |
+
|
| 83 |
+
if selected_index is not None and not lora_repo:
|
| 84 |
+
selected_lora = loras[selected_index]
|
| 85 |
+
lora_path = selected_lora["repo"]
|
| 86 |
+
trigger_word = selected_lora["trigger_word"]
|
| 87 |
+
else: # override
|
| 88 |
+
selected_lora = loras[0]
|
| 89 |
+
lora_path = lora_repo
|
| 90 |
+
trigger_word = lora_trigger
|
| 91 |
+
|
| 92 |
+
# Load LoRA weights
|
| 93 |
+
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
| 94 |
+
if lora_weights: # override
|
| 95 |
+
pipe.load_lora_weights(lora_path, weight_name=lora_weights)
|
| 96 |
+
elif "weights" in selected_lora:
|
| 97 |
+
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
| 98 |
+
else:
|
| 99 |
+
pipe.load_lora_weights(lora_path)
|
| 100 |
+
|
| 101 |
+
# Set random seed for reproducibility
|
| 102 |
+
with calculateDuration("Randomizing seed"):
|
| 103 |
+
if randomize_seed:
|
| 104 |
+
seed = random.randint(0, MAX_SEED)
|
| 105 |
+
|
| 106 |
+
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
| 107 |
+
pipe.to("cpu")
|
| 108 |
+
pipe.unload_lora_weights()
|
| 109 |
+
return image, seed
|
| 110 |
+
|
| 111 |
+
run_lora.zerogpu = True
|
| 112 |
+
|
| 113 |
+
def get_repo_safetensors(repo_id: str):
|
| 114 |
+
from huggingface_hub import HfApi
|
| 115 |
+
api = HfApi()
|
| 116 |
+
try:
|
| 117 |
+
if " " in repo_id or not api.repo_exists(repo_id): return gr.update(value="", choices=[])
|
| 118 |
+
files = api.list_repo_files(repo_id=repo_id)
|
| 119 |
+
except Exception as e:
|
| 120 |
+
print(f"Error: Failed to get {repo_id}'s info. ")
|
| 121 |
+
print(e)
|
| 122 |
+
return gr.update(choices=[])
|
| 123 |
+
files = [f for f in files if f.endswith(".safetensors")]
|
| 124 |
+
if len(files) == 0: return gr.update(value="", choices=[])
|
| 125 |
+
else: return gr.update(value=files[0], choices=files)
|
| 126 |
+
|
| 127 |
+
def change_base_model(repo_id: str):
|
| 128 |
+
from huggingface_hub import HfApi
|
| 129 |
+
global pipe
|
| 130 |
+
api = HfApi()
|
| 131 |
+
try:
|
| 132 |
+
if " " in repo_id or not api.repo_exists(repo_id): return
|
| 133 |
+
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(e)
|
| 136 |
+
|
| 137 |
+
css = '''
|
| 138 |
+
#gen_btn{height: 100%}
|
| 139 |
+
#title{text-align: center}
|
| 140 |
+
#title h1{font-size: 3em; display:inline-flex; align-items:center}
|
| 141 |
+
#title img{width: 100px; margin-right: 0.5em}
|
| 142 |
+
#gallery .grid-wrap{height: 10vh}
|
| 143 |
+
'''
|
| 144 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
| 145 |
+
title = gr.HTML(
|
| 146 |
+
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> FLUX LoRA the Explorer</h1>""",
|
| 147 |
+
elem_id="title",
|
| 148 |
+
)
|
| 149 |
+
selected_index = gr.State(None)
|
| 150 |
+
with gr.Row():
|
| 151 |
+
with gr.Column(scale=3):
|
| 152 |
+
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
| 153 |
+
with gr.Column(scale=1, elem_id="gen_column"):
|
| 154 |
+
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
| 155 |
+
with gr.Row():
|
| 156 |
+
with gr.Column(scale=3):
|
| 157 |
+
selected_info = gr.Markdown("")
|
| 158 |
+
gallery = gr.Gallery(
|
| 159 |
+
[(item["image"], item["title"]) for item in loras],
|
| 160 |
+
label="LoRA Gallery",
|
| 161 |
+
allow_preview=False,
|
| 162 |
+
columns=3,
|
| 163 |
+
elem_id="gallery"
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
with gr.Column(scale=4):
|
| 167 |
+
result = gr.Image(label="Generated Image")
|
| 168 |
+
|
| 169 |
+
with gr.Row():
|
| 170 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 171 |
+
with gr.Column():
|
| 172 |
+
|
| 173 |
+
with gr.Row():
|
| 174 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
| 175 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
| 176 |
+
|
| 177 |
+
with gr.Row():
|
| 178 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
| 179 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
| 180 |
+
|
| 181 |
+
with gr.Row():
|
| 182 |
+
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 183 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 184 |
+
|
| 185 |
+
with gr.Row():
|
| 186 |
+
lora_repo = gr.Dropdown(label="LoRA Repo", choices=[], info="Input LoRA Repo ID", value="", allow_custom_value=True)
|
| 187 |
+
lora_weights = gr.Dropdown(label="LoRA Filename", choices=[], info="Optional", value="", allow_custom_value=True)
|
| 188 |
+
lora_trigger = gr.Textbox(label="LoRA Trigger Prompt", value="")
|
| 189 |
+
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.95)
|
| 190 |
+
|
| 191 |
+
with gr.Row():
|
| 192 |
+
model_name = gr.Dropdown(label="Base Model", choices=models, value=models[0], allow_custom_value=True)
|
| 193 |
+
|
| 194 |
+
gallery.select(
|
| 195 |
+
update_selection,
|
| 196 |
+
inputs=[width, height],
|
| 197 |
+
outputs=[prompt, selected_info, selected_index, width, height]
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
gr.on(
|
| 201 |
+
triggers=[generate_button.click, prompt.submit],
|
| 202 |
+
fn=run_lora,
|
| 203 |
+
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
| 204 |
+
lora_scale, lora_repo, lora_weights, lora_trigger],
|
| 205 |
+
outputs=[result, seed]
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
lora_repo.change(get_repo_safetensors, [lora_repo], [lora_weights])
|
| 209 |
+
model_name.change(change_base_model, [model_name], None)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
app.queue()
|
| 213 |
app.launch()
|