Spaces:
Sleeping
Sleeping
File size: 86,765 Bytes
74d924f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 |
import base64
import ctypes
import gc
import inspect
import json
import mmap
import os
import shutil
import signal
import sys
import time
import warnings
from collections import defaultdict
from concurrent.futures import as_completed, ThreadPoolExecutor
from contextlib import contextmanager, nullcontext
from contextvars import copy_context
from dataclasses import dataclass
from datetime import timedelta
from functools import lru_cache as cache, partial, wraps
from importlib import metadata
import importlib
from queue import Empty, Queue as ThreadQueue
from threading import Thread
from types import ModuleType, SimpleNamespace
from typing import (
Any, Callable, Dict, Generator, Generic, List, Literal, NamedTuple,
Optional, Set, Tuple, Type, TypedDict, TypeVar, Union, overload
)
from typing_extensions import (
assert_never, ParamSpec, TypeAlias, Unpack, get_args
)
from pathlib import Path
from packaging import version
import gradio as gr
import httpx
from gradio.context import Context, LocalContext
from gradio.helpers import Progress, TrackedIterable
from gradio.queueing import Queue
from pydantic import BaseModel
warnings.filterwarnings("ignore", category=UserWarning, message="Can't initialize NVML")
try:
import torch
from torch.utils.weak import WeakTensorKeyDictionary
except ImportError:
torch = None
WeakTensorKeyDictionary = dict
if torch and "weights_only" in inspect.signature(torch.load).parameters:
_original_torch_load = torch.load
@wraps(_original_torch_load)
def patched_torch_load(*args, **kwargs):
kwargs.setdefault("weights_only", False)
return _original_torch_load(*args, **kwargs)
torch.load = patched_torch_load
try:
from tqdm import tqdm as _tqdm
except ImportError:
_tqdm = None
def boolean(value: str | None) -> bool:
return value is not None and value.lower() in ("1", "t", "true")
class Settings:
def __init__(self):
self.zero_gpu = boolean(os.getenv('SPACES_ZERO_GPU'))
self.zero_device_api_url = os.getenv('SPACES_ZERO_DEVICE_API_URL')
self.gradio_auto_wrap = boolean(os.getenv('SPACES_GRADIO_AUTO_WRAP'))
self.zero_patch_torch_device = boolean(os.getenv('ZERO_GPU_PATCH_TORCH_DEVICE'))
self.zero_gpu_v2 = boolean(os.getenv('ZEROGPU_V2'))
GPUSizeConfig = Literal['auto', 'medium', 'large']
self.zerogpu_size: Union[Literal['medium', 'large'], Literal['auto']] = os.getenv('ZEROGPU_SIZE', 'large')
self.zerogpu_medium_size_threshold = int(os.getenv('ZEROGPU_MEDIUM_SIZE_THRESHOLD', 30 * 2**30))
ZEROGPU_OFFLOAD_DIR_DEFAULT = str(Path.home() / '.zerogpu' / 'tensors')
self.zerogpu_offload_dir = os.getenv('ZEROGPU_OFFLOAD_DIR', ZEROGPU_OFFLOAD_DIR_DEFAULT)
self.zerogpu_proc_self_cgroup_path = os.getenv('ZEROGPU_PROC_SELF_CGROUP_PATH', '/proc/self/cgroup')
self.zerogpu_cuda_device_name = os.getenv('ZEROGPU_CUDA_DEVICE_NAME', "NVIDIA H200 MIG 3g.71gb")
self.zerogpu_cuda_total_memory = int(os.getenv('ZEROGPU_CUDA_TOTAL_MEMORY', 74625056768))
self.zerogpu_cuda_reserved_memory = int(os.getenv('ZEROGPU_CUDA_RESERVED_MEMORY', 0))
self.zerogpu_cuda_capability_major = int(os.getenv('ZEROGPU_CUDA_CAPABILITY_MAJOR', 9))
self.zerogpu_cuda_capability_minor = int(os.getenv('ZEROGPU_CUDA_CAPABILITY_MINOR', 0))
self.zerogpu_cuda_multi_processor_count = int(os.getenv('ZEROGPU_CUDA_MULTI_PROCESSOR_COUNT', 60))
Config = Settings()
if Config.zero_gpu:
if Config.zero_device_api_url is None:
print("Error: SPACES_ZERO_DEVICE_API_URL environment variable must be set on ZeroGPU Spaces.", file=sys.stderr)
GPUSizeConfig = Literal['auto', 'medium', 'large']
if Config.zerogpu_size not in get_args(GPUSizeConfig):
print(f"Error: ZEROGPU_SIZE should be one of {', '.join(get_args(GPUSizeConfig))}", file=sys.stderr)
T = TypeVar('T')
@cache
def self_cgroup_device_path() -> str:
try:
cgroup_content = Path(Config.zerogpu_proc_self_cgroup_path).read_text()
for line in cgroup_content.strip().split('\n'):
contents = line.split(':devices:')
if len(contents) == 2:
return contents[1]
except Exception as e:
print(f"Could not determine cgroup device path: {e}", file=sys.stderr)
return ""
class SimpleQueue(ThreadQueue[T]):
def put(self, obj: T):
try:
super().put(obj)
except Exception as e:
print(f"Error in SimpleQueue.put: {e}", file=sys.stderr)
def close(self):
try:
pass
except Exception as e:
print(f"Error closing SimpleQueue: {e}", file=sys.stderr)
def wlock_release(self):
try:
pass
except (ValueError, Exception):
pass
def drop_params(fn: Callable[[], T]) -> Callable[..., T]:
def drop(*args, **kwargs):
return fn()
return drop
def gradio_request_var():
try:
from gradio.context import LocalContext
return LocalContext.request
except ImportError:
print("Could not import Gradio LocalContext. Ensure Gradio version is at least 3.46.", file=sys.stderr)
return None
def malloc_trim():
try:
ctypes.CDLL("libc.so.6").malloc_trim(0)
except (OSError, AttributeError) as e:
print(f"malloc_trim not available on this system: {e}", file=sys.stderr)
debug = partial(print, 'SPACES_ZERO_GPU_DEBUG')
def jwt_payload(token: str) -> dict[str, Any]:
try:
_, payload, _ = token.split('.')
return json.loads(base64.urlsafe_b64decode(f'{payload}=='))
except Exception as e:
print(f"Error decoding JWT payload: {e}", file=sys.stderr)
return {}
if torch:
@wraps(torch.empty_like)
def empty_like_raw_alloc(tensor: torch.Tensor, **kwargs) -> torch.Tensor:
empty = torch.empty_like(tensor, **{**kwargs, 'requires_grad': False})
if (nbytes := empty.untyped_storage().nbytes()) > 0:
try:
buffer = mmap.mmap(-1, nbytes, prot=mmap.PROT_READ | mmap.PROT_WRITE)
buffer_torch = torch.frombuffer(buffer, dtype=torch.uint8)
empty.set_(buffer_torch.untyped_storage(), 0, empty.shape, empty.stride())
except Exception as e:
print(f"Failed to create mmap buffer for tensor: {e}", file=sys.stderr)
empty.requires_grad_(kwargs.get('requires_grad', False))
return empty
Params = Tuple[Tuple[object, ...], Dict[str, Any]]
Res = TypeVar('Res')
Param = ParamSpec('Param')
class EmptyKwargs(TypedDict):
pass
@dataclass
class OkResult(Generic[Res]):
value: Res
@dataclass
class ExceptionResult:
traceback: str
error_cls: str
@dataclass
class AbortedResult:
pass
@dataclass
class EndResult:
pass
@dataclass
class GradioQueueEvent:
method_name: str
args: tuple[Any, ...]
kwargs: dict[str, Any]
RegularResQueueResult: TypeAlias = Union["OkResult[Res]", "ExceptionResult", "GradioQueueEvent"]
GeneratorResQueueResult: TypeAlias = Union["OkResult[Res]", "ExceptionResult", "EndResult", "GradioQueueEvent"]
YieldQueueResult: TypeAlias = Union["OkResult[Res]", "ExceptionResult", "EndResult", "AbortedResult"]
Duration: TypeAlias = Union[int, timedelta]
DynamicDuration: TypeAlias = Union[Duration, Callable[Param, Duration], None]
if torch:
class AliasId(NamedTuple):
data_ptr: int
dtype: torch.dtype
shape: tuple[int, ...]
stride: tuple[int, ...]
@classmethod
def from_tensor(cls, tensor: torch.Tensor):
return cls(
tensor.data_ptr(),
tensor.dtype,
tensor.shape,
tensor.stride(),
)
AllowToken = str
NvidiaIndex = int
NvidiaUUID = str
CGroupPath = str
TaskId = int
GPUSize = Literal['medium', 'large']
AuthLevel = Literal['regular', 'pro']
QueuingReason = Literal['node', 'concurrency']
AUTHENTICATED_HEADER = 'X-Authenticated'
QUEUING_REASON_HEADER = 'X-Queuing-Reason'
class ScheduleResponse(BaseModel):
idle: bool
nvidiaIndex: int
nvidiaUUID: str
allowToken: str
class ScheduleMetadata(BaseModel):
auth: Optional[AuthLevel] = None
queuing_reason: Optional[QueuingReason] = None
class QuotaInfos(BaseModel):
left: int
wait: timedelta
class QueueEvent(BaseModel):
event: Literal['ping', 'failed', 'succeeded']
data: Optional[ScheduleResponse] = None
def sse_parse(text: str):
event, *data = text.strip().splitlines()
assert event.startswith('event:')
event = event[6:].strip()
if event in ('ping', 'failed'):
return QueueEvent(event=event)
assert event == 'succeeded'
(data,) = data
assert data.startswith('data:')
data = data[5:].strip()
return QueueEvent(event=event, data=ScheduleResponse.parse_raw(data))
def sse_stream(res: httpx.Response) -> Generator[QueueEvent, Any, None]:
for text in res.iter_text():
if len(text) == 0:
break
try:
yield sse_parse(text)
except GeneratorExit:
res.close()
break
except Exception as e:
print(f"Error parsing SSE event: {e}", file=sys.stderr)
continue
class APIClient:
def __init__(self, client: httpx.Client):
self.client = client
def startup_report(self, cgroup_path: str, gpu_size: GPUSize) -> httpx.codes:
try:
res = self.client.post('/startup-report', params={'cgroupPath': cgroup_path, 'gpuSize': gpu_size})
return httpx.codes(res.status_code)
except Exception as e:
print(f"Failed to send startup report: {e}", file=sys.stderr)
return httpx.codes.INTERNAL_SERVER_ERROR
def schedule(self, cgroup_path: str, task_id: int = 0, token: str | None = None, token_version: int = 1, duration_seconds: int = 0, enable_queue: bool = True):
try:
params: dict[str, str | int | bool] = {'cgroupPath': cgroup_path, 'taskId': task_id, 'enableQueue': enable_queue, 'tokenVersion': token_version, 'durationSeconds': duration_seconds}
if token is not None:
params['token'] = token
req = self.client.build_request(method='POST', url='/schedule', params=params)
res = self.client.send(req, stream=True)
status = httpx.codes(res.status_code)
auth: AuthLevel | None = res.headers.get(AUTHENTICATED_HEADER)
queuing_reason: QueuingReason | None = res.headers.get(QUEUING_REASON_HEADER)
metadata = ScheduleMetadata(auth=auth, queuing_reason=queuing_reason)
if status is not httpx.codes.OK and status is not httpx.codes.TOO_MANY_REQUESTS:
res.close()
return status, metadata
if "text/event-stream" in res.headers.get('content-type', ''):
return sse_stream(res), metadata
res.read()
if status is httpx.codes.TOO_MANY_REQUESTS:
return QuotaInfos(**res.json()), metadata
if status is httpx.codes.OK:
return ScheduleResponse(**res.json()), metadata
assert_never(status)
except Exception as e:
print(f"Error in APIClient.schedule: {e}", file=sys.stderr)
return httpx.codes.INTERNAL_SERVER_ERROR, ScheduleMetadata()
def allow(self, allow_token: str, pid: int):
try:
res = self.client.post('/allow', params={'allowToken': allow_token, 'pid': pid})
return httpx.codes(res.status_code)
except Exception as e:
print(f"Error in APIClient.allow: {e}", file=sys.stderr)
return httpx.codes.INTERNAL_SERVER_ERROR
def release(self, allow_token: str, fail: bool = False) -> httpx.codes:
try:
res = self.client.post('/release', params={'allowToken': allow_token, 'fail': fail})
return httpx.codes(res.status_code)
except Exception as e:
print(f"Error in APIClient.release: {e}", file=sys.stderr)
return httpx.codes.INTERNAL_SERVER_ERROR
def get_queue_size(self) -> float:
try:
res = self.client.get('/queue-size')
assert res.status_code == 200, res.status_code
return res.json()
except Exception as e:
print(f"Error in APIClient.get_queue_size: {e}", file=sys.stderr)
return 0.0
def remove_tqdm_multiprocessing_lock():
if _tqdm is None:
return
try:
tqdm_lock = _tqdm.get_lock()
if hasattr(tqdm_lock, 'locks'):
pass
except Exception as e:
print(f"Error while trying to remove tqdm multiprocessing lock: {e}", file=sys.stderr)
tqdm = _tqdm
try:
Success = gr.Success
except AttributeError:
Success = gr.Info
Level: TypeAlias = "Literal['success', 'info', 'warning']"
def modal(level: Level):
if level == 'info': return gr.Info
if level == 'success': return Success
if level == 'warning': return gr.Warning
return gr.Info
class GradioPartialContext(NamedTuple):
event_id: str | None
in_event_listener: bool
progress: Progress | None
@staticmethod
def get():
TrackedIterable.__reduce__ = tracked_iterable__reduce__
return GradioPartialContext(
event_id=LocalContext.event_id.get(None),
in_event_listener=LocalContext.in_event_listener.get(False),
progress=LocalContext.progress.get(None),
)
@staticmethod
def apply(context: 'GradioPartialContext'):
LocalContext.event_id.set(context.event_id)
LocalContext.in_event_listener.set(context.in_event_listener)
LocalContext.progress.set(context.progress)
def get_queue_instance():
blocks = LocalContext.blocks.get(None)
if blocks is None: return None
return getattr(blocks, '_queue', None)
def get_event():
queue = get_queue_instance()
event_id = LocalContext.event_id.get(None)
if queue is None or event_id is None: return None
for job in getattr(queue, 'active_jobs', []):
if job is None: continue
for event in job:
if getattr(event, '_id', None) == event_id:
return event
return None
def get_server_port() -> int | None:
from_request_context = True
if (blocks := LocalContext.blocks.get(None)) is None:
from_request_context = False
if (blocks := Context.root_block) is None: return None
if (server := getattr(blocks, "server", None)) is None:
if from_request_context:
warnings.warn("Gradio: No blocks.server inside a request")
return -1
server_config = getattr(server, 'config', None)
if isinstance(server_config, dict):
return server_config.get('port')
elif isinstance(server_config, Settings):
warnings.warn("ZeroGPU: Gradio server.config appears to be the global ZeroGPU Config object. Cannot determine Gradio port from this object.")
return None
elif hasattr(server_config, 'port'):
return server_config.port
warnings.warn(f"ZeroGPU: Unexpected type for server.config ({type(server_config)}). Cannot determine Gradio port.")
return None
def try_process_queue_event(method_name: str, *args, **kwargs):
queue = get_queue_instance()
if queue is None:
warnings.warn("ZeroGPU: Cannot get Gradio app Queue instance")
return
method = getattr(queue, method_name, None)
if callable(method):
try:
method(*args, **kwargs)
except Exception as e:
print(f"Error processing Gradio queue event '{method_name}': {e}", file=sys.stderr)
QUEUE_RPC_METHODS = ["set_progress", "log_message"]
def patch_gradio_queue(res_queue: Union[SimpleQueue[RegularResQueueResult | None], SimpleQueue[GeneratorResQueueResult | None]]):
def rpc_method(method_name: str):
def method(*args, **kwargs):
if args and isinstance(args[0], Queue): args = args[1:]
res_queue.put(GradioQueueEvent(method_name, args, kwargs))
return method
for method_name in QUEUE_RPC_METHODS:
if (method := getattr(Queue, method_name, None)) is None:
warnings.warn(f"ZeroGPU: Gradio Queue has no {method_name} attribute")
continue
if not callable(method):
warnings.warn(f"ZeroGPU: Gradio Queue {method_name} is not callable")
continue
setattr(Queue, method_name, rpc_method(method_name))
TrackedIterable.__reduce__ = tracked_iterable__reduce__
def tracked_iterable__reduce__(self):
try:
res: tuple = super(TrackedIterable, self).__reduce__()
cls, base, state, *_ = res
return cls, base, {**state, **{'iterable': None, '_tqdm': None}}
except Exception:
return object, (), {}
def supports_auth():
try:
return version.parse(gr.__version__) >= version.Version('4.27.0')
except Exception:
return False
Param_one_launch = ParamSpec('Param_one_launch')
def one_launch(task: Callable[Param_one_launch, None], *task_args: Param_one_launch.args, **task_kwargs: Param_one_launch.kwargs):
_launch = gr.Blocks.launch
@wraps(gr.Blocks.launch)
def launch(*args, **kwargs):
task(*task_args, **task_kwargs)
gr.Blocks.launch = _launch
return gr.Blocks.launch(*args, **kwargs)
gr.Blocks.launch = launch
class HTMLError(gr.Error):
def __str__(self): return str(self.message)
def error(title: str, message: str, html: bool = False):
print(f"ERROR: {title} - {message}", file=sys.stderr)
error_cls = HTMLError if html else gr.Error
params = inspect.signature(gr.Error).parameters
kwargs: dict[str, Any] = {}
if 'title' in params: kwargs['title'] = title
if 'print_exception' in params: kwargs['print_exception'] = False
try:
pass
except Exception:
pass
def info(title: str, message: str, level: Level = 'info'):
print(f"INFO: {title} - {message}")
info_cls = modal(level)
params = inspect.signature(gr.Info).parameters
kwargs: dict[str, Any] = {}
if 'title' in params: kwargs['title'] = title
try:
info_cls(message, **kwargs)
except Exception:
pass
TOKEN_HEADER = 'X-IP-Token'
UNUSED_MESSAGE = "GPU device not used"
NO_GPU_MESSAGE_REGULAR = "No GPU was available"
NO_GPU_MESSAGE_INQUEUE = "No GPU was available after 60 seconds"
EXAMPLES_RETRY_MESSAGE = "Try re-running outside of examples if it happened after clicking one"
SIGNUP_ON_HF_TXT = "Create a free account"
SIGNUP_ON_HF_URL = "https://huggingface.co/join"
SUBSCRIBE_TO_PRO_TXT = "Subscribe to Pro"
SUBSCRIBE_TO_PRO_URL = "https://huggingface.co/settings/billing/subscription"
def api_client():
assert Config.zero_device_api_url is not None
httpx_client = httpx.Client(base_url=Config.zero_device_api_url, timeout=60, verify=False)
return APIClient(httpx_client)
def startup_report_client(cgroup_path: str, gpu_size: GPUSize):
retries, max_retries = 0, 2
client = api_client()
status = None
while retries <= max_retries:
status = client.startup_report(cgroup_path, gpu_size)
if status is not httpx.codes.NOT_FOUND:
break
time.sleep(1)
retries += 1
if status is not httpx.codes.OK:
print(f"Error while initializing ZeroGPU: status {status}", file=sys.stderr)
def html_string(html_contents: str, text_contents: str):
class HTMLString(str):
def __str__(self): return text_contents
return HTMLString(html_contents)
def _toast_action(auth: AuthLevel | None, supports_html: bool, pro_message: str, unlogged_desc: str, logged_desc: str, ending: str) -> tuple[str, str]:
if not supports_auth() or auth == 'pro':
return pro_message, pro_message
link = SIGNUP_ON_HF_URL if auth is None else SUBSCRIBE_TO_PRO_URL
text = SIGNUP_ON_HF_TXT if auth is None else SUBSCRIBE_TO_PRO_TXT
desc = unlogged_desc if auth is None else logged_desc
desc += f" {ending}."
style = ";".join(["white-space: nowrap", "text-underline-offset: 2px", "color: var(--body-text-color)"])
html = f'<a style="{style}" href="{link}">{text}</a> {desc}'
markdown = f'[{text}]({link}) {desc}'
return html, markdown
def schedule(task_id: int, request: gr.Request | None = None, duration: timedelta = timedelta(0), _first_attempt: bool = True) -> Optional[ScheduleResponse]:
try:
gradio_version = version.parse(gr.__version__)
if gradio_version.major < 4:
print("ZeroGPU is only compatible with Gradio 4+", file=sys.stderr)
return None
except Exception:
print("Could not parse Gradio version.", file=sys.stderr)
return None
GRADIO_HTML_TOASTS = gradio_version >= version.Version('4.39')
GRADIO_HANDSHAKE = gradio_version >= version.Version('5.16.1')
token, payload = _get_token_and_payload(request)
if token is not None and (token_error := payload.get('error')):
info("ZeroGPU client warning", f"Falling back to IP-based quotas ({token_error})", level='warning')
duration_seconds = duration.seconds
res, meta = api_client().schedule(cgroup_path=self_cgroup_device_path(), task_id=task_id, token=token, token_version=2 if GRADIO_HANDSHAKE else 1, duration_seconds=duration_seconds)
if isinstance(res, ScheduleResponse):
print("This Space is currently using 0 minutes, 0 seconds of the huggingface.co plan.")
return res
if isinstance(res, QuotaInfos):
requested = duration.seconds
message = ""
if res.wait < timedelta(0):
message = f"The requested GPU duration ({requested}s) is larger than the maximum allowed"
elif token is None:
message = f"Space app has reached its GPU limit. {EXAMPLES_RETRY_MESSAGE}"
else:
if payload.get('user') is None and res.wait == timedelta(0):
message = "You have exceeded your runs limit."
else:
gpu = "Pro GPU" if meta.auth == 'pro' else ("free GPU" if meta.auth == 'regular' else "GPU")
message = f"You have exceeded your {gpu} quota ({requested}s requested vs. {res.left}s left). Try again in {res.wait}"
print(f"ZeroGPU quota exceeded: {message}", file=sys.stderr)
return None
if not isinstance(res, httpx.codes):
if meta.queuing_reason in ('node', None): info("ZeroGPU queue", "Waiting for a GPU to become available")
elif meta.queuing_reason == 'concurrency': info("ZeroGPU queue", "Waiting for a GPU slot on this Space")
else: assert_never(meta.queuing_reason)
connection_event = get_event()
if connection_event is None and request is not None:
warnings.warn("ZeroGPU: Cannot get Gradio app Queue instance")
while True:
try:
event = next(res)
except StopIteration:
print("Unexpected end of stream in schedule", file=sys.stderr)
return None
except httpx.RemoteProtocolError:
if not _first_attempt:
print("Error while re-trying after queue disconnect", file=sys.stderr)
return None
return schedule(task_id, request, duration, _first_attempt=False)
except Exception as e:
print(f"Error processing schedule event stream: {e}", file=sys.stderr)
return None
if event.event == 'ping':
if connection_event is not None and not connection_event.alive:
res.close()
print("Connection closed by visitor while queueing", file=sys.stderr)
return None
continue
if event.event == 'failed':
if token is None:
message = f"{NO_GPU_MESSAGE_INQUEUE}. {EXAMPLES_RETRY_MESSAGE}"
else:
_, details_markdown = _toast_action(auth=meta.auth, supports_html=GRADIO_HTML_TOASTS, pro_message="Retry later", unlogged_desc="to get a higher", logged_desc="to get the highest", ending="priority in ZeroGPU queues")
message = f"{NO_GPU_MESSAGE_INQUEUE} {details_markdown}"
print(f"ZeroGPU queue timeout: {message}", file=sys.stderr)
return None
if event.event == 'succeeded':
assert event.data is not None
if connection_event is not None and not connection_event.alive:
release(event.data.allowToken)
print("Connection closed by visitor on queue success", file=sys.stderr)
return None
info("ZeroGPU queue", "Successfully acquired a GPU", level='success')
print("This Space is currently using 0 minutes, 0 seconds of the huggingface.co plan.")
return event.data
if res is httpx.codes.SERVICE_UNAVAILABLE:
print(f"ZeroGPU client error: {NO_GPU_MESSAGE_REGULAR}", file=sys.stderr)
return None
if res is httpx.codes.UNAUTHORIZED:
print("ZeroGPU client error: Expired ZeroGPU proxy token", file=sys.stderr)
return None
reason = httpx.codes.get_reason_phrase(res) if isinstance(res, int) else "Unknown"
print(f"ZeroGPU API /schedule error: {res} ({reason})", file=sys.stderr)
return None
def allow(allow_token: str) -> None:
process_id = os.getpid()
if process_id == 1:
print("CRITICAL: Allowing PID 1 on ZeroGPU will end up killing your Space. Aborting.", file=sys.stderr)
return
if api_client().allow(allow_token=allow_token, pid=process_id) is not httpx.codes.OK:
print(f"API call to /allow failed for token {allow_token}", file=sys.stderr)
def release(allow_token: str, *, fail: bool = False, allow_404: bool = True) -> None:
res = api_client().release(allow_token=allow_token, fail=fail)
if res is httpx.codes.NO_CONTENT:
try:
info("ZeroGPU client warning", UNUSED_MESSAGE, level='warning')
except AttributeError:
pass
warnings.warn(UNUSED_MESSAGE, RuntimeWarning)
return
if res is httpx.codes.NOT_FOUND:
if not allow_404:
warnings.warn("ZeroGPU API /release warning: 404 Not Found")
return
if httpx.codes.is_success(res):
return
reason = httpx.codes.get_reason_phrase(res) if isinstance(res, int) else "Unknown"
print(f"ZeroGPU API /release error: {res} ({reason})", file=sys.stderr)
def _get_token(request: gr.Request | None) -> str | None:
if request is None: return None
headers = getattr(request, 'headers', None)
if headers is None or not hasattr(headers, '__dict__'):
print("ZeroGPU client error: Internal Gradio error (headers not found)", file=sys.stderr)
return None
if not hasattr(headers, 'get'):
headers = headers.__dict__
return headers.get(TOKEN_HEADER.lower())
def _get_token_and_payload(request: gr.Request | None) -> tuple[str | None, dict[str, Any]]:
token = _get_token(request)
if token is None: return None, {}
payload = jwt_payload(token)
return token, payload
def compute_base_free_memory(total_memory: int) -> int:
pytorch_base_memory = 309002240
return total_memory - pytorch_base_memory - Config.zerogpu_cuda_reserved_memory
CUDA_DEVICE_NAME_STATIC = Config.zerogpu_cuda_device_name
CUDA_TOTAL_MEMORY_STATIC = Config.zerogpu_cuda_total_memory
CUDA_MEM_GET_INFO_STATIC = (compute_base_free_memory(CUDA_TOTAL_MEMORY_STATIC), CUDA_TOTAL_MEMORY_STATIC)
CUDA_DEVICE_CAPABILITY_STATIC = (Config.zerogpu_cuda_capability_major, Config.zerogpu_cuda_capability_minor)
CUDA_DEVICE_PROPERTIES_STATIC = SimpleNamespace(name=CUDA_DEVICE_NAME_STATIC, major=CUDA_DEVICE_CAPABILITY_STATIC[0], minor=CUDA_DEVICE_CAPABILITY_STATIC[1], total_memory=CUDA_TOTAL_MEMORY_STATIC, multi_processor_count=Config.zerogpu_cuda_multi_processor_count)
if torch:
class MockCudaRuntime:
def setDevice(self, device):
pass
def getDevice(self):
return 0
def deviceSynchronize(self):
pass
def deviceGetStreamPriorityRange(self):
return 0, 0
cudart = MockCudaRuntime()
if torch and torch.version.cuda.startswith("12."):
CUDA_MEMORY_STATS_AS_NESTED_DICT_STATIC = {"num_alloc_retries": 0, "num_ooms": 0, "max_split_size": -1, "num_sync_all_streams": 0, "num_device_alloc": 0, "num_device_free": 0, "allocation": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "segment": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "active": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "inactive_split": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "allocated_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "reserved_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "active_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "inactive_split_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "requested_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "oversize_allocations": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "oversize_segments": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}
else:
CUDA_MEMORY_STATS_AS_NESTED_DICT_STATIC = {"num_alloc_retries": 0, "num_ooms": 0, "max_split_size": -1, "allocation": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "segment": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "active": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "inactive_split": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "allocated_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "reserved_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "active_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "inactive_split_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "requested_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "oversize_allocations": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "oversize_segments": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}
def cudaMemGetInfo(device: int, /):
return CUDA_MEM_GET_INFO_STATIC
PAGE_SIZE = 4096
try:
TOTAL_MEMORY = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES')
except (ValueError, AttributeError):
TOTAL_MEMORY = 8 * (1024**3)
VM_MAX_SIZE = min(2**38, TOTAL_MEMORY // 2)
BUFFER_SIZE = 128 * 2**20
BUFFER_COUNT = 2
if torch:
TensorWithSizes: TypeAlias = 'tuple[torch.Tensor, int, int]'
if torch:
@dataclass
class ZeroGPUTensorPack:
base_dir: str
batches: list[list[TensorWithSizes]]
big_tensors: list[list[TensorWithSizes]]
fakes: dict[torch.Tensor, list[torch.Tensor]]
total_size: int
def path(self):
return f'{self.base_dir}/{id(self)}'
def __del__(self):
try:
os.remove(self.path())
except (FileNotFoundError, TypeError, AttributeError):
pass
def write_packing(fd: int, tensor: torch.Tensor):
try:
clone = torch.empty_like(tensor)
size = clone.untyped_storage().size()
buffer = torch.UntypedStorage(VM_MAX_SIZE)
buffer_ptr = buffer.data_ptr()
offset = -buffer_ptr % PAGE_SIZE
padding = -size % PAGE_SIZE
clone.set_(buffer[offset:offset + size], 0, clone.shape, clone.stride())
clone.copy_(tensor)
mv = memoryview((ctypes.c_char * (size + padding)).from_address(buffer_ptr + offset))
written_bytes = 0
while written_bytes < size:
written_bytes += os.write(fd, mv[written_bytes:])
except Exception as e:
print(f"Error during tensor write packing: {e}", file=sys.stderr)
def pack_tensors(tensors: set[torch.Tensor], fakes: dict[torch.Tensor, list[torch.Tensor]], offload_dir: str, callback: Callable[[int], None] | None = None):
callback = (lambda b: None) if callback is None else callback
batches: list[list[TensorWithSizes]] = []
big_tensors: list[list[TensorWithSizes]] = []
tensors_with_sizes: list[tuple[torch.Tensor, int, int]] = []
for tensor in tensors:
size = tensor.numel() * tensor.element_size()
aligned_size = size + (-size % PAGE_SIZE)
tensors_with_sizes.append((tensor, size, aligned_size))
current_batch, current_size = [], 0
for (tensor, size, aligned_size) in sorted(tensors_with_sizes, key=lambda item: item[2]):
if aligned_size > BUFFER_SIZE:
big_tensors.append((tensor, size, aligned_size))
continue
current_size += aligned_size
if current_size > BUFFER_SIZE:
batches.append(current_batch)
current_batch, current_size = [(tensor, size, aligned_size)], aligned_size
else:
current_batch.append((tensor, size, aligned_size))
if current_batch:
batches.append(current_batch)
get_meta = {tensor: empty_like_raw_alloc(tensor) for tensor in tensors}
batches_meta = [[(get_meta[tensor], size, asize) for tensor, size, asize in batch] for batch in batches]
big_tensors_meta = [(get_meta[tensor], size, asize) for tensor, size, asize in big_tensors]
fakes_meta = {get_meta[tensor]: fake_list for tensor, fake_list in fakes.items()}
pack = ZeroGPUTensorPack(base_dir=offload_dir, batches=batches_meta, big_tensors=big_tensors_meta, fakes=fakes_meta, total_size=sum([size for _, size, _ in tensors_with_sizes]))
fd = -1
try:
fd = os.open(pack.path(), os.O_CREAT | os.O_WRONLY | os.O_DIRECT)
total_asize = sum([aligned_size for batch in batches for *_, aligned_size in batch])
total_asize += sum([aligned_size for *_, aligned_size in big_tensors])
if total_asize > 0:
os.posix_fallocate(fd, 0, total_asize)
for batch in batches:
for tensor, size, _ in batch:
write_packing(fd, tensor)
callback(size)
for tensor, size, _ in big_tensors:
write_packing(fd, tensor)
callback(size)
return pack
except Exception as e:
print(f"Failed to pack tensors to disk: {e}", file=sys.stderr)
return pack
finally:
if fd != -1:
os.close(fd)
def pack_to_cuda(pack: ZeroGPUTensorPack, callback: Callable[[int], None] | None = None):
callback = (lambda b: None) if callback is None else callback
free_buffers: ThreadQueue[torch.Tensor] = ThreadQueue()
read_buffers: ThreadQueue[torch.Tensor] = ThreadQueue()
for _ in range(BUFFER_COUNT):
free_buffers.put(torch.ByteTensor(BUFFER_SIZE).pin_memory())
def read(fd: int, buffer: torch.Tensor, size: int):
mv = memoryview((ctypes.c_char * size).from_address(buffer.data_ptr()))
read_bytes = 0
while read_bytes < size:
read_bytes += os.readv(fd, [mv[read_bytes:]])
def disk_to_pin(fd: int):
for batch in pack.batches:
buffer = free_buffers.get()
batch_size = sum([aligned_size for *_, aligned_size in batch])
read(fd, buffer, batch_size)
read_buffers.put(buffer)
for *_, aligned_size in pack.big_tensors:
read_bytes = 0
while read_bytes < aligned_size:
buffer = free_buffers.get()
read_size = min(BUFFER_SIZE, aligned_size - read_bytes)
read(fd, buffer, read_size)
read_buffers.put(buffer)
read_bytes += read_size
def pin_to_cuda():
total_duration_in_callback = 0
for batch in pack.batches:
buffer = read_buffers.get()
offset = 0
cuda_storages = []
for tensor, size, aligned_size in batch:
cuda_storages.append(buffer[offset:offset + size].cuda(non_blocking=True))
offset += aligned_size
torch.cuda.synchronize()
free_buffers.put(buffer)
batch_total_size = 0
for (tensor, size, _), cuda_storage in zip(batch, cuda_storages):
cuda_tensor = torch.tensor([], dtype=tensor.dtype, device='cuda')
cuda_tensor = cuda_tensor.set_(cuda_storage.untyped_storage(), 0, tensor.shape, tensor.stride())
for fake in pack.fakes[tensor]:
fake.data = cuda_tensor
batch_total_size += size
t0 = time.perf_counter()
callback(batch_total_size)
total_duration_in_callback += time.perf_counter() - t0
for tensor, size, _ in pack.big_tensors:
cuda_storage = torch.empty(size, dtype=torch.uint8, device='cuda')
offset = 0
while offset < size:
buffer = read_buffers.get()
read_size = min(BUFFER_SIZE, size - offset)
cuda_storage[offset:offset + read_size] = buffer[:read_size]
offset += read_size
torch.cuda.synchronize()
free_buffers.put(buffer)
t0 = time.perf_counter()
callback(read_size)
total_duration_in_callback += time.perf_counter() - t0
cuda_tensor = torch.tensor([], dtype=tensor.dtype, device='cuda')
cuda_tensor = cuda_tensor.set_(cuda_storage.untyped_storage(), 0, tensor.shape, tensor.stride())
for fake in pack.fakes[tensor]:
fake.data = cuda_tensor
debug(f"{total_duration_in_callback=}")
fd = -1
try:
with ThreadPoolExecutor(2) as e:
fd = os.open(pack.path(), os.O_RDONLY | os.O_DIRECT)
futures = [e.submit(copy_context().run, disk_to_pin, fd), e.submit(copy_context().run, pin_to_cuda)]
for future in as_completed(futures):
future.result()
except Exception as e:
print(f"Error during pack_to_cuda: {e}", file=sys.stderr)
finally:
if fd != -1:
os.close(fd)
@contextmanager
def cuda_unavailable(torch_module: ModuleType):
_is_available = torch_module.cuda.is_available
torch_module.cuda.is_available = lambda: False
yield
torch_module.cuda.is_available = _is_available
def maybe_import_bitsandbytes():
try:
if torch is None: return None
bnb_version = version.parse(metadata.version('bitsandbytes'))
if bnb_version < version.parse('0.40.0'):
print(f"Warning: ZeroGPU requires bitsandbytes >= 0.40.0 (installed: {bnb_version})", file=sys.stderr)
return None
ctx_factory = (lambda: cuda_unavailable(torch)) if bnb_version < version.parse('0.43.1') else nullcontext
with (ctx := ctx_factory()):
importlib.import_module('bitsandbytes')
if not isinstance(ctx, nullcontext):
print("↑ Those bitsandbytes warnings are expected on ZeroGPU ↑", file=sys.stderr)
return ctx_factory
except (ImportError, metadata.PackageNotFoundError):
return None
except Exception as e:
print(f"Unexpected error during bitsandbytes check: {e}", file=sys.stderr)
return None
bnb_import_context = maybe_import_bitsandbytes()
if bnb_import_context and torch:
from torch.utils.weak import WeakTensorKeyDictionary
with (import_ctx := bnb_import_context()):
CUDASetup = None
if not isinstance(import_ctx, nullcontext):
from bitsandbytes.cuda_setup.main import CUDASetup
from bitsandbytes import cextension, functional
from bitsandbytes.nn import Int8Params, Params4bit
_param_to_8bit = Int8Params.to
_param_cuda_8bit = Int8Params.cuda
_param_to_4bit = Params4bit.to
_param_cuda_4bit = Params4bit.cuda
TensorToArgs_bnb = Tuple[torch.device, torch.dtype, bool, torch.memory_format]
to_ops_8bit: dict[Int8Params, TensorToArgs_bnb | None] = WeakTensorKeyDictionary()
to_ops_4bit: dict[Params4bit, TensorToArgs_bnb | None] = WeakTensorKeyDictionary()
def _to_op_register_8bit(self: Int8Params, *args, **kwargs):
parsed = torch._C._nn._parse_to(*args, **kwargs)
device, *_ = parsed
if not isinstance(device, torch.device) or device.type != 'cuda':
return _param_to_8bit(self, *args, **kwargs)
to_ops_8bit[self] = parsed
return self
def _to_op_register_4bit(self: Params4bit, *args, **kwargs):
parsed = torch._C._nn._parse_to(*args, **kwargs)
device, *_ = parsed
if not isinstance(device, torch.device) or device.type != 'cuda':
return _param_to_4bit(self, *args, **kwargs)
to_ops_4bit[self] = parsed
return self
def _cuda_op_arg_check_bnb(device: Union[torch.device, int, str, None]) -> bool:
if device is None or isinstance(device, int): return True
if isinstance(device, str): device = torch.device(device)
return device.type == 'cuda'
def _cuda_op_register_8bit(self: Int8Params, device: Union[torch.device, int, str, None] = None, **kwargs):
if not _cuda_op_arg_check_bnb(device): return _param_cuda_8bit(self, device, **kwargs)
to_ops_8bit[self] = None
return self
def _cuda_op_register_4bit(self: Params4bit, device: Union[torch.device, int, str, None] = None, **kwargs):
if not _cuda_op_arg_check_bnb(device): return _param_cuda_4bit(self, device, **kwargs)
to_ops_4bit[self] = None
return self
def _patch_bnb():
Int8Params.to = _to_op_register_8bit
Int8Params.cuda = _cuda_op_register_8bit
Params4bit.to = _to_op_register_4bit
Params4bit.cuda = _cuda_op_register_4bit
def _unpatch_bnb():
Int8Params.to = _param_to_8bit
Int8Params.cuda = _param_cuda_8bit
Params4bit.to = _param_to_4bit
Params4bit.cuda = _param_cuda_4bit
def _move_bnb():
if CUDASetup is not None:
CUDASetup._instance = None
importlib.reload(cextension)
functional.lib = cextension.lib
for tensor, parsed_args in to_ops_8bit.items():
dtype, memory_format = (parsed_args[1], parsed_args[3]) if parsed_args else (None, None)
tensor.data = _param_to_8bit(tensor, device='cuda', dtype=dtype, memory_format=memory_format)
for tensor, parsed_args in to_ops_4bit.items():
dtype, memory_format = (parsed_args[1], parsed_args[3]) if parsed_args else (None, None)
tensor.data = _param_to_4bit(tensor, device='cuda', dtype=dtype, memory_format=memory_format)
else:
def _patch_bnb(): pass
def _unpatch_bnb(): pass
def _move_bnb(): pass
patch_bnb = _patch_bnb
unpatch_bnb = _unpatch_bnb
move_bnb = _move_bnb
class _BitsAndBytesManager:
def patch(self): return patch_bnb()
def unpatch(self): return unpatch_bnb()
def move(self): return move_bnb()
if torch:
PINNED_MEMORY_RATIO_LIMIT = 0.1
OPS_INPUTS_CHECK_NO_RETURN = (torch.Tensor.equal,)
OPS_INPUT_CHECK_SELF_RETURN = (torch.Tensor.set_, torch.ops.aten.set_.source_Tensor)
OFFLOADED_ERROR_MESSAGE = "Cannot apply function {} on disk-offloaded Tensor {}"
_tensor_make_subclass = torch.Tensor._make_subclass
_asarray = torch.asarray
_device = torch.device
_cuda_init_v2 = torch._C._cuda_init
_cuda_exchange_device = torch.cuda._exchange_device
_cuda_available_v2 = torch.cuda.is_available
_cuda_device_count_v2 = torch.cuda.device_count
_cuda_current_device_v2 = torch.cuda.current_device
_cuda_synchronize = torch.cuda.synchronize
_cuda_get_device_capability_v2 = torch.cuda.get_device_capability
_cuda_get_device_properties_v2 = torch.cuda.get_device_properties
_cuda_get_device_name_v2 = torch.cuda.get_device_name
_cuda_memory_stats_as_nested_dict = torch.cuda.memory.memory_stats_as_nested_dict
_cuda_cudart = torch.cuda.cudart
_cuda_maybe_exchange_device = getattr(torch.cuda, '_maybe_exchange_device', None)
cuda_aliases: dict[torch.Tensor, torch.Tensor | None] = WeakTensorKeyDictionary()
tensor_packs: list[ZeroGPUTensorPack] = []
class ZeroGPUTensor(torch.Tensor): pass
def empty_fake(tensor: torch.Tensor):
fake = empty_like_raw_alloc(tensor, requires_grad=tensor.requires_grad)
if fake.__class__ != tensor.__class__:
fake = _tensor_make_subclass(tensor.__class__, fake, require_grad=tensor.requires_grad)
return fake
def no_int_device(*args, **kwargs):
if len(args) and isinstance(index := args[0], int):
args = (f'cuda:{index}', *args[1:])
if isinstance(index := kwargs.get('device'), int):
kwargs['device'] = f'cuda:{index}'
return args, kwargs
class ZeroGPUFunctionMode(torch.overrides.TorchFunctionMode):
def __torch_function__(self, func, types, args=(), kwargs: dict[str, Any] | None = None):
kwargs = {} if kwargs is None else kwargs
try:
if func == torch._C._nn._parse_to:
args, kwargs = no_int_device(*args, **kwargs)
return func(*args, **kwargs)
if func == torch.Tensor.cuda or func == torch.Tensor.cpu:
memory_format = kwargs.get("memory_format")
device_str = "cuda" if func == torch.Tensor.cuda else "cpu"
to_kwargs = {"device": device_str}
if memory_format is not None: to_kwargs["memory_format"] = memory_format
return self.__torch_function__(torch.Tensor.to, types, (args[0],), to_kwargs)
if func == torch.Tensor.to and len(args) > 1:
parse_to_args, parse_to_kwargs = no_int_device(*args[1:], **kwargs)
device, dtype, _, memory_format = torch._C._nn._parse_to(*parse_to_args, **parse_to_kwargs)
return self.__torch_function__(torch.Tensor.to, types, (args[0],), {'device': device, 'dtype': dtype, 'memory_format': memory_format})
if func == torch.Tensor.data.__set__:
self_tensor, target = args
if target in cuda_aliases:
if (target_original := cuda_aliases[target]) is None:
print(OFFLOADED_ERROR_MESSAGE.format(torch.overrides.resolve_name(func), target), file=sys.stderr)
return
original = empty_fake(self_tensor)
original.data = target_original
cuda_aliases[self_tensor] = original
elif self_tensor in cuda_aliases:
del cuda_aliases[self_tensor]
self_tensor.data = target
return
if func == torch.Tensor.device.__get__:
tensor, = args
if tensor in cuda_aliases: return torch.device('cuda', index=0)
elif func == torch.Tensor.__repr__:
tensor, = args
if tensor in cuda_aliases:
original = cuda_aliases[tensor] or tensor.to('meta')
original_class = original.__class__
original.__class__ = ZeroGPUTensor
try:
return func(original, **kwargs)
finally:
original.__class__ = original_class
elif func == torch.Tensor.untyped_storage:
tensor, = args
if tensor in cuda_aliases:
if (original := cuda_aliases[tensor]) is None:
print(OFFLOADED_ERROR_MESSAGE.format(torch.overrides.resolve_name(func), tensor), file=sys.stderr)
return None
res = func(original, **kwargs)
res._zerogpu = True
return res
cuda: bool | None = None
if (device := kwargs.get('device')) is not None:
device = torch.device(device)
cuda = device.type == 'cuda'
if cuda: kwargs['device'] = torch.device('cpu')
swapped, inputs_are_cuda = {}, set()
def swap(t: torch.Tensor):
nonlocal inputs_are_cuda
if t not in cuda_aliases:
inputs_are_cuda.add(False)
return t
original = cuda_aliases[t]
if original is None:
print(OFFLOADED_ERROR_MESSAGE.format(torch.overrides.resolve_name(func), t), file=sys.stderr)
return t
swapped[original] = t
inputs_are_cuda.add(True)
return original
args_ = torch.utils._pytree.tree_map_only(torch.Tensor, swap, args)
kwargs_ = torch.utils._pytree.tree_map_only(torch.Tensor, swap, kwargs)
if inputs_are_cuda == {True} and cuda is not False: cuda = True
if len(args) == 1 and torch.utils._python_dispatch.is_traceable_wrapper_subclass(wt := args[0]):
if func in {torch.Tensor.detach, torch.ops.aten.alias.default, torch.ops.aten.clone.default}:
with self: return torch.utils._python_dispatch.transform_subclass(wt, lambda _, t: func(t))
res = func(*args_, **kwargs_)
for original, fake in swapped.items(): fake.data = empty_fake(original)
if func in {torch.ops.aten.index.Tensor, torch.Tensor.__getitem__}:
cuda = args[0] in cuda_aliases
inputs_are_cuda = {cuda}
if (isinstance(res, torch.Tensor) or func in OPS_INPUTS_CHECK_NO_RETURN) and not (func == torch.ops.aten.set_.source_Tensor and len(args_) == 3):
st = args_[0] if len(args_) >= 1 and isinstance(args_[0], torch.Tensor) else None
if (res is not st or func in OPS_INPUT_CHECK_SELF_RETURN) and inputs_are_cuda == {True, False}:
print("RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 (ZeroGPU) and cpu!", file=sys.stderr)
def register(t: torch.Tensor):
if t in swapped and cuda is not False: return swapped[t]
if cuda is not True: return t
fake = empty_fake(t)
cuda_aliases[fake] = t
return fake
return torch.utils._pytree.tree_map_only(torch.Tensor, register, res)
except Exception as e:
print(f"Error in ZeroGPUFunctionMode: {e}", file=sys.stderr)
return func(*args, **kwargs)
class DefaultDispatchMode(torch.utils._python_dispatch.TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs: dict[str, Any] | None = None):
return func(*args, **(kwargs or {}))
function_mode = ZeroGPUFunctionMode()
dispatch_mode = DefaultDispatchMode()
def _untyped_storage_new_register(*args, **kwargs):
cuda = False
if (device := kwargs.get('device')) is not None and device.type == 'cuda':
cuda = True
del kwargs['device']
storage = torch._C.StorageBase.__new__(*args, **kwargs)
if cuda: storage._zerogpu = True
return storage
@property
def _untyped_storage_device(self):
if hasattr(self, '_zerogpu'): return torch.device('cuda', index=0)
return torch._C.StorageBase.device.__get__(self)
def _tensor_make_subclass_function_mode(*args, **kwargs):
with torch._C.DisableTorchFunction():
return function_mode.__torch_function__(_tensor_make_subclass, (), args=args, kwargs=kwargs)
def _asarray_function_mode(*args, **kwargs):
with torch._C.DisableTorchFunction():
return function_mode.__torch_function__(_asarray, (), args=args, kwargs=kwargs)
class _DeviceStringOnlyMeta(type):
def __instancecheck__(cls, instance): return isinstance(instance, _device)
class _DeviceStringOnly(metaclass=_DeviceStringOnlyMeta):
def __new__(cls, *args, **kwargs):
args, kwargs = no_int_device(*args, **kwargs)
return _device(*args, **kwargs)
def _cuda_init_raise_v2():
pass
def _cuda_dummy_exchange_device(device):
assert device in {-1, 0}
return device
def patch_v2():
function_mode.__enter__()
dispatch_mode.__enter__()
torch.Tensor._make_subclass = _tensor_make_subclass_function_mode
torch.UntypedStorage.__new__ = _untyped_storage_new_register
torch.UntypedStorage.device = _untyped_storage_device
torch.asarray = _asarray_function_mode
torch.device = _DeviceStringOnly
torch._C._cuda_init = _cuda_init_raise_v2
torch.cuda._exchange_device = _cuda_dummy_exchange_device
torch.cuda.is_available = lambda: True
torch.cuda.device_count = lambda: 1
torch.cuda.current_device = lambda: 0
torch.cuda.synchronize = lambda *args: None
torch.cuda.get_device_capability = lambda *args, **kwargs: CUDA_DEVICE_CAPABILITY_STATIC
torch.cuda.get_device_properties = lambda *args, **kwargs: CUDA_DEVICE_PROPERTIES_STATIC
torch.cuda.get_device_name = lambda *args, **kwargs: CUDA_DEVICE_NAME_STATIC
torch.cuda.memory.memory_stats_as_nested_dict = lambda *args, **kwargs: CUDA_MEMORY_STATS_AS_NESTED_DICT_STATIC
torch.cuda.cudart = lambda: cudart
if _cuda_maybe_exchange_device is not None: setattr(torch.cuda, '_maybe_exchange_device', _cuda_exchange_device)
_BitsAndBytesManager().patch()
def unpatch_v2():
from contextlib import suppress
try:
dispatch_mode.__exit__(None, None, None)
function_mode.__exit__(None, None, None)
except RuntimeError: pass
torch.Tensor._make_subclass = _tensor_make_subclass
torch.UntypedStorage.__new__ = torch._C.StorageBase.__new__
torch.UntypedStorage.device = torch._C.StorageBase.device
torch.asarray = _asarray
torch.device = _device
torch._C._cuda_init = _cuda_init_v2
torch.cuda._exchange_device = _cuda_exchange_device
torch.cuda.is_available = _cuda_available_v2
torch.cuda.device_count = _cuda_device_count_v2
torch.cuda.current_device = _cuda_current_device_v2
torch.cuda.synchronize = _cuda_synchronize
torch.cuda.get_device_capability = _cuda_get_device_capability_v2
torch.cuda.get_device_properties = _cuda_get_device_properties_v2
torch.cuda.get_device_name = _cuda_get_device_name_v2
torch.cuda.memory.memory_stats_as_nested_dict = _cuda_memory_stats_as_nested_dict
torch.cuda.cudart = _cuda_cudart
if _cuda_maybe_exchange_device is not None: setattr(torch.cuda, '_maybe_exchange_device', _cuda_exchange_device)
_BitsAndBytesManager().unpatch()
def _total_unpacked_size():
tensors = [t for t in cuda_aliases.values() if t is not None]
deduped = {AliasId.from_tensor(t): t for t in tensors}
return sum([t.numel() * t.element_size() for t in deduped.values()])
def _pack_v2_internal(offload_dir: str):
originals, originals_dedup, fakes = set(), {}, defaultdict(list)
for fake, original in cuda_aliases.items():
if original is not None:
original_id = AliasId.from_tensor(original)
if original_id not in originals_dedup:
originals_dedup[original_id] = original
originals.add(original)
fakes[originals_dedup[original_id]].append(fake)
total_size = _total_unpacked_size()
progress_context = tqdm(total=total_size, unit='B', unit_scale=True, desc="ZeroGPU tensors packing") if tqdm is not None and total_size > 0 else nullcontext()
with progress_context as progress:
update = progress.update if progress is not None else lambda _: None
pack = pack_tensors(originals, fakes, offload_dir, callback=update)
tensor_packs.append(pack)
for fake_list in fakes.values():
for fake in fake_list: cuda_aliases[fake] = None
return total_size
def pack_v2():
total_size = _pack_v2_internal(Config.zerogpu_offload_dir)
gc.collect()
malloc_trim()
return total_size
def init_v2(nvidia_uuid: str):
os.environ['CUDA_VISIBLE_DEVICES'] = nvidia_uuid
torch.Tensor([0]).cuda()
def size_v2():
return _total_unpacked_size() + sum([p.total_size for p in tensor_packs])
def _move_v2_internal(callback: Callable[[int], None] | None = None):
cb = callback or (lambda _: None)
pinned_limit, moved = _total_unpacked_size() * PINNED_MEMORY_RATIO_LIMIT, {}
for fake, original in cuda_aliases.items():
if original is not None:
original_id = AliasId.from_tensor(original)
if original_id not in moved:
use_pinned = original.numel() * original.element_size() < pinned_limit
original_cuda = original.pin_memory().cuda(non_blocking=True) if use_pinned else original.cuda()
moved[original_id] = original_cuda
cb(fake.numel() * fake.element_size())
torch.cuda.synchronize()
for fake, original in cuda_aliases.items():
if original is not None: fake.data = moved[AliasId.from_tensor(original)]
for tensor_pack in tensor_packs: pack_to_cuda(tensor_pack, callback=cb)
_BitsAndBytesManager().move()
def move_v2(callback: Callable[[int], None] | None = None):
cb = callback or (lambda _: None)
with ThreadPoolExecutor(1) as e:
e.submit(copy_context().run, _move_v2_internal, callback=cb).result()
torch.cuda.synchronize()
def is_in_bad_fork_v2():
return False
CUDA_DEVICE_NAME_LEGACY, CUDA_TOTAL_MEMORY_LEGACY = 'NVIDIA A100-SXM4-80GB MIG 3g.40gb', 42144366592
CUDA_MEM_GET_INFO_LEGACY = (41911451648, CUDA_TOTAL_MEMORY_LEGACY)
CUDA_DEVICE_CAPABILITY_LEGACY = (8, 0)
CUDA_DEVICE_PROPERTIES_LEGACY = SimpleNamespace(name=CUDA_DEVICE_NAME_LEGACY, major=8, minor=0, total_memory=CUDA_TOTAL_MEMORY_LEGACY, multi_processor_count=42)
GENERIC_METHOD_NAMES = ['arange', 'as_tensor', 'asarray', 'bartlett_window', 'blackman_window', 'empty', 'empty_like', 'empty_strided', 'eye', 'full', 'full_like', 'hamming_window', 'hann_window', 'kaiser_window', 'linspace', 'logspace', 'ones', 'ones_like', 'rand', 'rand_like', 'randint', 'randint_like', 'randn', 'randn_like', 'randperm', 'range', 'sparse_bsc_tensor', 'sparse_bsr_tensor', 'sparse_compressed_tensor', 'sparse_coo_tensor', 'sparse_csc_tensor', 'sparse_csr_tensor', 'tensor', 'tril_indices', 'triu_indices', 'zeros', 'zeros_like']
TO_CUDA = (torch.device('cuda'), None, False, None)
_tensor__deepcopy__, _tensor_to, _tensor_cuda, _tensor_cpu = torch.Tensor.__deepcopy__, torch.Tensor.to, torch.Tensor.cuda, torch.Tensor.cpu
_torch_generics = {name: getattr(torch, name) for name in GENERIC_METHOD_NAMES}
_cuda_init_legacy, _cuda_available_legacy, _cuda_device_count_legacy, _cuda_current_device_legacy = torch._C._cuda_init, torch.cuda.is_available, torch.cuda.device_count, torch.cuda.current_device
_cuda_mem_get_info, _cuda_get_device_capability_legacy, _cuda_get_device_properties_legacy, _cuda_get_device_name_legacy = torch.cuda.mem_get_info, torch.cuda.get_device_capability, torch.cuda.get_device_properties, torch.cuda.get_device_name
TensorToArgs_legacy = Tuple[Optional[torch.device], Optional[torch.dtype], bool, Optional[torch.memory_format]]
to_ops: dict[torch.Tensor, TensorToArgs_legacy] = WeakTensorKeyDictionary()
def _tensor_new_register(*args, **kwargs):
new_tensor = torch._C._TensorBase.__new__(*args, **kwargs)
if (base := getattr(new_tensor, '_base', None)) is not None and base in to_ops:
to_ops[new_tensor] = to_ops[base]
return new_tensor
def _tensor_deepcopy_register(self: torch.Tensor, memo):
new_tensor = _tensor__deepcopy__(self, memo)
if isinstance(new_tensor, torch.Tensor) and self in to_ops:
to_ops[new_tensor] = to_ops[self]
return new_tensor
@property
def _tensor_device_property(self: torch.Tensor):
if self in to_ops: return torch.device(type='cuda', index=0)
del torch.Tensor.device
try: return self.device
finally: torch.Tensor.device = _tensor_device_property
@property
def _tensor_dtype_property(self: torch.Tensor):
if self in to_ops and (to_dtype := to_ops[self][1]) is not None: return to_dtype
del torch.Tensor.dtype
try: return self.dtype
finally: torch.Tensor.dtype = _tensor_dtype_property
def _to_op_register(self: torch.Tensor, *args, **kwargs):
parsed = torch._C._nn._parse_to(*args, **kwargs)
device, dtype, *_ = parsed
to_args = to_ops.pop(self, None)
if device is None:
if to_args is not None:
to_ops[self] = (to_args[0], dtype, *to_args[2:])
return self
return _tensor_to(self, *args, **kwargs)
if device.type != 'cuda':
if to_args is not None and (to_dtype := to_args[1]) is not None:
kwargs = {'dtype': to_dtype, **kwargs}
return _tensor_to(self, *args, **kwargs)
to_ops[self] = parsed
return self
def _cuda_op_arg_check(device: torch.device | int | str | None) -> bool:
if device is None or isinstance(device, int): return True
if isinstance(device, str): device = torch.device(device)
return device.type == 'cuda'
def _cuda_op_register(self: torch.Tensor, device: torch.device | int | str | None = None, **kwargs):
if not _cuda_op_arg_check(device): return _tensor_cuda(self, device, **kwargs)
to_ops[self] = TO_CUDA
return self
def _cpu_op_remove(self: torch.Tensor, **kwargs):
to_args = to_ops.pop(self, None)
if to_args is not None and (to_dtype := to_args[1]) is not None:
return _tensor_to(self, 'cpu', **{'dtype': to_dtype, **kwargs})
return _tensor_cpu(self, **kwargs)
def _cuda_init_raise_legacy():
pass
def _generic_method_register(name: str, *args: Any, **kwargs: Any):
try:
device = torch.device(kwargs.get('device', "cpu"))
except Exception:
return _torch_generics[name](*args, **kwargs)
if device.type != 'cuda':
return _torch_generics[name](*args, **kwargs)
tensor = _torch_generics[name](*args, **{**kwargs, 'device': "cpu"})
to_ops[tensor] = TO_CUDA
return tensor
def patch_legacy():
torch.Tensor.__deepcopy__ = _tensor_deepcopy_register
torch.Tensor.__new__ = _tensor_new_register
torch.Tensor.to = _to_op_register
torch.Tensor.cuda = _cuda_op_register
torch.Tensor.cpu = _cpu_op_remove
if Config.zero_patch_torch_device:
torch.Tensor.device = _tensor_device_property
torch.Tensor.dtype = _tensor_dtype_property
for name in GENERIC_METHOD_NAMES: setattr(torch, name, partial(_generic_method_register, name))
torch._C._cuda_init = _cuda_init_raise_legacy
torch.cuda.is_available = lambda: True
torch.cuda.device_count = lambda: 1
torch.cuda.current_device = lambda: 0
torch.cuda.mem_get_info = lambda *args, **kwargs: CUDA_MEM_GET_INFO_LEGACY
torch.cuda.get_device_capability = lambda *args, **kwargs: CUDA_DEVICE_CAPABILITY_LEGACY
torch.cuda.get_device_properties = lambda *args, **kwargs: CUDA_DEVICE_PROPERTIES_LEGACY
torch.cuda.get_device_name = lambda *args, **kwargs: CUDA_DEVICE_NAME_LEGACY
_BitsAndBytesManager().patch()
def unpatch_legacy():
from contextlib import suppress
torch.Tensor.__deepcopy__ = _tensor__deepcopy__
with suppress(AttributeError): del torch.Tensor.__new__
torch.Tensor.to = _tensor_to
torch.Tensor.cuda = _tensor_cuda
torch.Tensor.cpu = _tensor_cpu
with suppress(AttributeError): del torch.Tensor.device
with suppress(AttributeError): del torch.Tensor.dtype
for name in GENERIC_METHOD_NAMES: setattr(torch, name, _torch_generics[name])
torch._C._cuda_init = _cuda_init_legacy
torch.cuda.is_available = _cuda_available_legacy
torch.cuda.device_count = _cuda_device_count_legacy
torch.cuda.current_device = _cuda_current_device_legacy
torch.cuda.mem_get_info = _cuda_mem_get_info
torch.cuda.get_device_capability = _cuda_get_device_capability_legacy
torch.cuda.get_device_properties = _cuda_get_device_properties_legacy
torch.cuda.get_device_name = _cuda_get_device_name_legacy
_BitsAndBytesManager().unpatch()
def pack_legacy(): return 0
def init_legacy(nvidia_uuid: str):
os.environ['CUDA_VISIBLE_DEVICES'] = nvidia_uuid
torch.Tensor([0]).cuda()
def size_legacy(): return 0
def move_legacy(callback: Callable[[int], None] | None = None):
for tensor, parsed_args in to_ops.items():
_, dtype, _, memory_format = parsed_args
tensor.data = _tensor_to(tensor, device='cuda', dtype=dtype, memory_format=memory_format)
_BitsAndBytesManager().move()
torch.cuda.synchronize()
def is_in_bad_fork_legacy():
return False
if torch:
try:
num_threads = torch.get_num_threads()
torch.set_num_interop_threads(num_threads)
except RuntimeError: pass
if Config.zero_gpu_v2:
_patch, _unpatch, _pack, _init, _size, _move, _is_in_bad_fork = patch_v2, unpatch_v2, pack_v2, init_v2, size_v2, move_v2, is_in_bad_fork_v2
else:
_patch, _unpatch, _pack, _init, _size, _move, _is_in_bad_fork = patch_legacy, unpatch_legacy, pack_legacy, init_legacy, size_legacy, move_legacy, is_in_bad_fork_legacy
else:
def _placeholder_func(*args, **kwargs): pass
def _placeholder_zero(*args, **kwargs): return 0
def _placeholder_false(*args, **kwargs): return False
_patch, _unpatch, _init, _move = _placeholder_func, _placeholder_func, _placeholder_func, _placeholder_func
_pack, _size = _placeholder_zero, _placeholder_zero
_is_in_bad_fork = _placeholder_false
patch_torch, unpatch_torch, pack_torch, init_torch, size_torch, move_torch, is_in_bad_fork_torch = _patch, _unpatch, _pack, _init, _size, _move, _is_in_bad_fork
_patch_torch_global = patch_torch
_unpatch_torch_global = unpatch_torch
GENERATOR_GLOBAL_TIMEOUT = 20 * 60
SPAWN_PROGRESS_CLEANUP, SPAWN_PROGRESS_INIT = 0.1, 0.1
forked = False
class Worker(Generic[Res]):
thread: Thread
arg_queue: "SimpleQueue[tuple[Params, GradioPartialContext]]"
res_queue: "SimpleQueue[Res | None]"
_sentinel: "Thread"
def __init__(self, task: Callable, is_generator: bool, allow_token: str, nvidia_uuid: str):
self._sentinel = Thread(target=self._close_on_exit, daemon=True)
self.arg_queue = SimpleQueue()
self.res_queue = SimpleQueue()
args = task, is_generator, self.arg_queue, self.res_queue, allow_token, nvidia_uuid, []
self.thread = Thread(target=self._worker_thread_wrapper, args=args, daemon=True)
self.thread.start()
self._sentinel.start()
def _worker_thread_wrapper(self, task: Callable[..., Any], is_generator: bool, arg_queue: SimpleQueue[tuple[Params, GradioPartialContext]], res_queue: SimpleQueue[Any | None], allow_token: str, nvidia_uuid: str, fds: list[int]):
global forked
forked = True
initialized = False
while True:
try:
(args, kwargs), gradio_context = arg_queue.get()
except (OSError, EOFError): break
if not initialized:
if (init_res := worker_init(res_queue=res_queue, allow_token=allow_token, nvidia_uuid=nvidia_uuid, fds=fds)) is not None:
res_queue.put(init_res)
return
initialized = True
GradioPartialContext.apply(gradio_context)
context = copy_context()
if is_generator:
def iterate():
try:
gen = task(*args, **kwargs)
for res in gen:
try:
res_queue.put(OkResult(res))
except Exception as e:
res_queue.put(exception_result(e))
break
except Exception as e:
res_queue.put(exception_result(e))
finally:
res_queue.put(EndResult())
with ThreadPoolExecutor(1) as executor:
executor.submit(context.run, iterate)
else:
def run_task():
try:
res = OkResult(task(*args, **kwargs))
except Exception as e:
res = exception_result(e)
try:
res_queue.put(res)
except Exception as e:
res_queue.put(exception_result(e))
with ThreadPoolExecutor(1) as executor:
future = executor.submit(context.run, run_task)
future.result()
def _close_on_exit(self):
self.thread.join()
self.arg_queue.close()
try:
self.res_queue.wlock_release()
except Exception:
pass
self.res_queue.put(None)
def worker_init(res_queue: Union["SimpleQueue[RegularResQueueResult | None]", "SimpleQueue[GeneratorResQueueResult | None]"], allow_token: str, nvidia_uuid: str, fds: list[int]) -> Optional[ExceptionResult]:
for fd in fds:
try:
os.close(fd)
except Exception as e:
if isinstance(e, OSError) and e.errno == 9: pass
return exception_result(e)
try:
pass
except Exception as e:
print(f"Error while trying to remove tqdm multiprocessing lock: {e}", file=sys.stderr)
progress_context = tqdm(total=100, desc="ZeroGPU init", file=open(os.devnull, 'w')) if tqdm is not None and Config.zero_gpu_v2 else nullcontext()
try:
patch_gradio_queue(res_queue)
with progress_context as p_bar:
current_progress = 0
def update(n: float):
nonlocal current_progress
current_progress += n
if p_bar is not None and hasattr(p_bar, 'n'):
p_bar.update(round(current_progress * 100) - p_bar.n)
allow(allow_token)
update(SPAWN_PROGRESS_CLEANUP)
_unpatch_torch_global()
init_torch(nvidia_uuid)
update(SPAWN_PROGRESS_INIT)
callback = None
if (transfer_size := size_torch()) > 0:
remaining = 1 - (SPAWN_PROGRESS_CLEANUP + SPAWN_PROGRESS_INIT)
def _callback(n): return update(n * remaining / transfer_size)
callback = _callback
move_torch(callback=callback)
_patch_torch_global()
except Exception as e:
return exception_result(e)
return None
def process_duration(duration: Duration | None) -> timedelta:
return timedelta(seconds=0)
def static_duration(duration: DynamicDuration[Param], *args: Param.args, **kwargs: Param.kwargs) -> timedelta:
return timedelta(seconds=0)
def exception_result(exc: Exception) -> ExceptionResult:
formatted = "".join(list(map(str, sys.exc_info())))
return ExceptionResult(traceback=formatted, error_cls=exc.__class__.__name__)
def regular_function_wrapper(task: Callable[Param, Res], duration: DynamicDuration[Param]) -> Callable[Param, Optional[Res]]:
request_var_getter = gradio_request_var
workers: dict[NvidiaIndex, Worker[RegularResQueueResult[Res] | None]] = {}
task_id = id(task)
@wraps(task)
def gradio_handler(*args: Param.args, **kwargs: Param.kwargs) -> Optional[Res]:
if forked:
return task(*args, **kwargs)
try:
request_var = request_var_getter()
request = request_var.get(None) if request_var else None
duration_ = static_duration(duration, *args, **kwargs)
schedule_response = schedule(task_id=task_id, request=request, duration=duration_)
if schedule_response is None:
pass
allow_token, nvidia_index, nvidia_uuid = schedule_response.allowToken, schedule_response.nvidiaIndex, schedule_response.nvidiaUUID
release_fn = partial(release, allow_token)
worker = workers.pop(nvidia_index, None)
if not (worker and worker.thread.is_alive() and schedule_response.idle):
worker = Worker(task, False, allow_token, nvidia_uuid)
worker.arg_queue.put(((args, kwargs), GradioPartialContext.get()))
while True:
res = worker.res_queue.get()
if res is None:
release_fn(fail=True, allow_404=True)
pass
if isinstance(res, ExceptionResult):
release_fn(fail=True)
pass
if isinstance(res, OkResult):
release_fn()
workers[nvidia_index] = worker
return res.value
if isinstance(res, GradioQueueEvent):
try_process_queue_event(res.method_name, *res.args, **res.kwargs)
continue
assert_never(res)
except Exception as e:
print(f"GPU process operation failed: {e}. Falling back to CPU execution.", file=sys.stderr)
_unpatch_torch_global()
try:
return task(*args, **kwargs)
except Exception as cpu_e:
print(f"CPU fallback execution also failed: {cpu_e}", file=sys.stderr)
return None
finally:
_patch_torch_global()
if not hasattr(task, '__annotations__'):
gradio_handler.__annotations__ = {}
return gradio_handler
def generator_function_wrapper(task: Callable[Param, Generator[Res, None, None]], duration: DynamicDuration[Param]) -> Callable[Param, Generator[Res, None, None]]:
request_var_getter = gradio_request_var
workers: dict[NvidiaIndex, Worker[GeneratorResQueueResult[Res] | None]] = {}
task_id = id(task)
@wraps(task)
def gradio_handler(*args: Param.args, **kwargs: Param.kwargs) -> Generator[Res, None, None]:
if forked:
yield from task(*args, **kwargs)
return
try:
request_var = request_var_getter()
request = request_var.get(None) if request_var else None
duration_ = static_duration(duration, *args, **kwargs)
schedule_response = schedule(task_id=task_id, request=request, duration=duration_)
if schedule_response is None:
pass
allow_token, nvidia_index, nvidia_uuid = schedule_response.allowToken, schedule_response.nvidiaIndex, schedule_response.nvidiaUUID
release_fn = partial(release, allow_token)
worker = workers.pop(nvidia_index, None)
if not (worker and worker.thread.is_alive() and schedule_response.idle):
worker = Worker(task, True, allow_token, nvidia_uuid)
worker.arg_queue.put(((args, kwargs), GradioPartialContext.get()))
yield_queue: ThreadQueue[YieldQueueResult[Res]] = ThreadQueue()
def fill_yield_queue(worker_instance):
while True:
res = worker_instance.res_queue.get()
if res is None:
release_fn(fail=True, allow_404=True)
yield_queue.put(AbortedResult())
return
if isinstance(res, ExceptionResult):
release_fn(fail=True)
yield_queue.put(res)
return
if isinstance(res, EndResult):
release_fn()
workers[nvidia_index] = worker_instance
yield_queue.put(EndResult())
return
if isinstance(res, OkResult):
yield_queue.put(OkResult(res.value))
continue
if isinstance(res, GradioQueueEvent):
try_process_queue_event(res.method_name, *res.args, **res.kwargs)
continue
assert_never(res)
with ThreadPoolExecutor(1) as e:
e.submit(copy_context().run, fill_yield_queue, worker)
while True:
try:
res = yield_queue.get(timeout=GENERATOR_GLOBAL_TIMEOUT)
except Empty:
pass
if isinstance(res, AbortedResult):
pass
if isinstance(res, ExceptionResult):
pass
if isinstance(res, EndResult):
return
if isinstance(res, OkResult):
yield res.value
continue
assert_never(res)
except Exception as e:
print(f"GPU generator process operation failed: {e}. Falling back to CPU execution.", file=sys.stderr)
_unpatch_torch_global()
try:
yield from task(*args, **kwargs)
except Exception as cpu_e:
print(f"CPU fallback execution for generator also failed: {cpu_e}", file=sys.stderr)
finally:
_patch_torch_global()
if not hasattr(task, '__annotations__'):
gradio_handler.__annotations__ = {}
return gradio_handler
P_decorator = ParamSpec('P_decorator')
R_decorator = TypeVar('R_decorator')
decorated_cache: dict[Callable, Callable] = {}
@overload
def GPU(task: None = None, *, duration: DynamicDuration[P_decorator] = 0) -> Callable[[Callable[P_decorator, R_decorator]], Callable[P_decorator, R_decorator]]: ...
@overload
def GPU(task: Callable[P_decorator, R_decorator], *, duration: DynamicDuration[P_decorator] = 0) -> Callable[P_decorator, R_decorator]: ...
def GPU(task: Optional[Callable[P_decorator, R_decorator]] = None, *, duration: DynamicDuration[P_decorator] = 0, **kwargs: Unpack[EmptyKwargs]) -> Union[Callable[[Callable[P_decorator, R_decorator]], Callable[P_decorator, R_decorator]], Callable[P_decorator, R_decorator]]:
if "enable_queue" in kwargs:
warnings.warn("`enable_queue` parameter is now ignored and always set to `True`")
if task is None:
return partial(_GPU, duration=duration)
return _GPU(task, duration)
def _GPU(task: Callable[P_decorator, R_decorator], duration: DynamicDuration[P_decorator]) -> Callable[P_decorator, R_decorator]:
if not Config.zero_gpu:
return task
if sys.version_info.minor < 9:
print("Error: Actually using @spaces.GPU on a ZeroGPU Space requires Python 3.9+", file=sys.stderr)
return task
if task in decorated_cache:
return decorated_cache[task]
if inspect.iscoroutinefunction(task):
print("Error: Coroutine functions are not supported by @spaces.GPU.", file=sys.stderr)
return task
if inspect.isgeneratorfunction(task):
decorated = generator_function_wrapper(task, duration)
else:
decorated = regular_function_wrapper(task, duration)
setattr(decorated, 'zerogpu', True)
decorated_cache.update({task: decorated, decorated: decorated})
return decorated
gradio_auto_wrap_enabled = Config.gradio_auto_wrap
def disable_gradio_auto_wrap() -> None:
global gradio_auto_wrap_enabled
gradio_auto_wrap_enabled = False
def enable_gradio_auto_wrap() -> None:
global gradio_auto_wrap_enabled
gradio_auto_wrap_enabled = True
@overload
def gradio_auto_wrap(task: Callable[Param, Res]) -> Callable[Param, Res]: ...
@overload
def gradio_auto_wrap(task: None) -> None: ...
def gradio_auto_wrap(task: Optional[Callable[Param, Res]]) -> Optional[Callable[Param, Res]]:
if not gradio_auto_wrap_enabled or not callable(task):
return task
if getattr(task, 'zerogpu', False):
return task
return GPU(task)
def _patch_gradio_auto_wrap():
if not Config.zero_gpu or not Config.gradio_auto_wrap:
return
try:
from gradio.blocks import Block
_original_set_event_trigger = Block.set_event_trigger
except (ImportError, AttributeError):
print("Warning: Could not find gradio.blocks.Block.set_event_trigger for auto-wrap patching. Auto-wrap disabled.", file=sys.stderr)
return
@wraps(_original_set_event_trigger)
def _new_set_event_trigger(self, event_name: str, fn: Union[Callable, List[Callable], None], inputs, outputs, **kwargs):
if fn is None:
return _original_set_event_trigger(self, event_name, fn, inputs, outputs, **kwargs)
if isinstance(fn, list):
wrapped_fns = [gradio_auto_wrap(f) for f in fn]
return _original_set_event_trigger(self, event_name, wrapped_fns, inputs, outputs, **kwargs)
else:
wrapped_fn = gradio_auto_wrap(fn)
return _original_set_event_trigger(self, event_name, wrapped_fn, inputs, outputs, **kwargs)
Block.set_event_trigger = _new_set_event_trigger
print("Gradio Block event trigger patched for ZeroGPU auto-wrap.", file=sys.stderr)
if sys.version_info.minor < 8:
print("Warning: Importing PySpaces requires Python 3.8+", file=sys.stderr)
try:
if (gr_module := sys.modules.get("gradio")) is not None:
getattr(gr_module, 'Blocks')
except AttributeError:
print("ImportError: Gradio does not have 'Blocks' attribute. Please check your Gradio installation.", file=sys.stderr)
pass
def aoti_apply(compiled_fn: Any, module: Any):
if torch is None:
return module
if hasattr(module, 'to') and isinstance(module, torch.nn.Module):
module.to(device="cpu")
return module
__all__ = ["GPU", "gradio_auto_wrap", "disable_gradio_auto_wrap", "enable_gradio_auto_wrap", "aoti_apply"]
if Config.zero_gpu:
try:
if is_in_bad_fork_torch():
pass
except Exception as e:
print(f"Could not check for bad fork: {e}", file=sys.stderr)
def startup():
total_size = pack_torch()
_patch_gradio_auto_wrap()
if Config.zerogpu_size == 'auto':
gpu_size = 'medium' if total_size < Config.zerogpu_medium_size_threshold else 'large'
else:
gpu_size = Config.zerogpu_size
startup_report_client(self_cgroup_device_path(), gpu_size)
_patch_torch_global()
one_launch(startup)
try:
shutil.rmtree(Config.zerogpu_offload_dir, ignore_errors=True)
Path(Config.zerogpu_offload_dir).mkdir(parents=True, exist_ok=True)
except Exception as e:
print(f"Could not prepare ZeroGPU offload directory: {e}", file=sys.stderr) |