Spaces:
Running
Running
| import os | |
| import sys | |
| if "APP_PATH" in os.environ: | |
| app_path = os.path.abspath(os.environ["APP_PATH"]) | |
| if os.getcwd() != app_path: | |
| # fix sys.path for import | |
| os.chdir(app_path) | |
| if app_path not in sys.path: | |
| sys.path.append(app_path) | |
| import gradio as gr | |
| import torch | |
| import torchaudio | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import re | |
| import random | |
| import string | |
| from audioseal import AudioSeal | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Load generator if not already loaded in reload mode | |
| if 'generator' not in globals(): | |
| generator = AudioSeal.load_generator("audioseal_wm_16bits") | |
| generator = generator.to(device) | |
| generator_nbytes = int(generator.msg_processor.nbits / 8) | |
| # Load detector if not already loaded in reload mode | |
| if 'detector' not in globals(): | |
| detector = AudioSeal.load_detector("audioseal_detector_16bits") | |
| detector = detector.to(device) | |
| def load_audio(file): | |
| wav, sample_rate = torchaudio.load(file) | |
| return wav, sample_rate | |
| def generate_msg_pt_by_format_string(format_string, bytes_count): | |
| msg_hex = format_string.replace("-", "") | |
| hex_length = bytes_count * 2 | |
| binary_list = [] | |
| for i in range(0, len(msg_hex), hex_length): | |
| chunk = msg_hex[i:i+hex_length] | |
| binary = bin(int(chunk, 16))[2:].zfill(bytes_count * 8) | |
| binary_list.append([int(b) for b in binary]) | |
| # torch.randint(0, 2, (1, 16), dtype=torch.int32) | |
| msg_pt = torch.tensor(binary_list, dtype=torch.int32) | |
| return msg_pt.to(device) | |
| def embed_watermark(audio, sr, msg_pt): | |
| original_audio = audio.to(device) | |
| # If the audio has more than one channel, average all channels to 1 channel | |
| if original_audio.shape[0] > 1: | |
| mono_audio = torch.mean(original_audio, dim=0, keepdim=True) | |
| else: | |
| mono_audio = original_audio | |
| # We add the batch dimension to the single audio to mimic the batch watermarking | |
| batched_audio = mono_audio.unsqueeze(0) | |
| watermark = generator.get_watermark(batched_audio, sr, message=msg_pt) | |
| watermarked_audio = batched_audio + watermark | |
| # Alternatively, you can also call forward() function directly with different tune-down / tune-up rate | |
| # watermarked_audio = generator(audios, sample_rate=sr, alpha=1) | |
| # Need remove batch dimension and to cpu | |
| return watermarked_audio.squeeze(0).detach().cpu() | |
| def generate_format_string_by_msg_pt(msg_pt, bytes_count): | |
| hex_length = bytes_count * 2 | |
| binary_int = 0 | |
| for bit in msg_pt: | |
| binary_int = (binary_int << 1) | int(bit.item()) | |
| hex_string = format(binary_int, f'0{hex_length}x') | |
| split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)] | |
| format_hex = "-".join(split_hex) | |
| return hex_string, format_hex | |
| def detect_watermark(audio, sr): | |
| watermarked_audio = audio.to(device) | |
| # If the audio has more than one channel, average all channels to 1 channel | |
| if watermarked_audio.shape[0] > 1: | |
| mono_audio = torch.mean(watermarked_audio, dim=0, keepdim=True) | |
| else: | |
| mono_audio = watermarked_audio | |
| # We add the batch dimension to the single audio to mimic the batch watermarking | |
| batched_audio = mono_audio.unsqueeze(0) | |
| result, message = detector.detect_watermark(batched_audio, sr) | |
| # pred_prob is a tensor of size batch x 2 x frames, indicating the probability (positive and negative) of watermarking for each frame | |
| # A watermarked audio should have pred_prob[:, 1, :] > 0.5 | |
| # message_prob is a tensor of size batch x 16, indicating of the probability of each bit to be 1. | |
| # message will be a random tensor if the detector detects no watermarking from the audio | |
| pred_prob, message_prob = detector(batched_audio, sr) | |
| return result, message, pred_prob, message_prob | |
| def get_waveform_and_specgram(waveform, sample_rate): | |
| # If the audio has more than one channel, average all channels to 1 channel | |
| if waveform.shape[0] > 1: | |
| waveform = torch.mean(waveform, dim=0, keepdim=True) | |
| waveform = waveform.squeeze().detach().cpu().numpy() | |
| num_frames = waveform.shape[-1] | |
| time_axis = torch.arange(0, num_frames) / sample_rate | |
| figure, (ax1, ax2) = plt.subplots(2, 1) | |
| ax1.plot(time_axis, waveform, linewidth=1) | |
| ax1.grid(True) | |
| ax2.specgram(waveform, Fs=sample_rate) | |
| figure.suptitle(f"Waveform and specgram") | |
| return figure | |
| def generate_hex_format_regex(bytes_count): | |
| hex_length = bytes_count * 2 | |
| hex_string = 'F' * hex_length | |
| split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)] | |
| format_like = "-".join(split_hex) | |
| regex_pattern = '^' + '-'.join([r'[0-9A-Fa-f]{4}'] * len(split_hex)) + '$' | |
| return format_like, regex_pattern | |
| def generate_hex_random_message(bytes_count): | |
| hex_length = bytes_count * 2 | |
| hex_string = ''.join(random.choice(string.hexdigits) for _ in range(hex_length)) | |
| split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)] | |
| random_str = "-".join(split_hex) | |
| return random_str, "".join(split_hex) | |
| with gr.Blocks(title="AudioSeal") as demo: | |
| gr.Markdown(""" | |
| # AudioSeal Demo | |
|  | |
| Find the project [here](https://github.com/facebookresearch/audioseal.git). | |
| """) | |
| with gr.Tabs(): | |
| with gr.TabItem("Embed Watermark"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| embedding_aud = gr.Audio(label="Input Audio", type="filepath") | |
| embedding_specgram = gr.Checkbox(label="Show specgram", value=False, info="Show debug information") | |
| embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks") | |
| format_like, regex_pattern = generate_hex_format_regex(generator_nbytes) | |
| msg, _ = generate_hex_random_message(generator_nbytes) | |
| embedding_msg = gr.Textbox( | |
| label=f"Message ({generator_nbytes} bytes hex string)", | |
| info=f"format like {format_like}", | |
| value=msg, | |
| interactive=False, show_copy_button=True) | |
| embedding_btn = gr.Button("Embed Watermark") | |
| with gr.Column(): | |
| marked_aud = gr.Audio(label="Output Audio", show_download_button=True) | |
| specgram_original = gr.Plot(label="Original Audio", format="png", visible=False) | |
| specgram_watermarked = gr.Plot(label="Watermarked Audio", format="png", visible=False) | |
| def change_embedding_type(type): | |
| if type == "random": | |
| msg, _ = generate_hex_random_message(generator_nbytes) | |
| return gr.update(interactive=False, value=msg) | |
| else: | |
| return gr.update(interactive=True) | |
| embedding_type.change( | |
| fn=change_embedding_type, | |
| inputs=[embedding_type], | |
| outputs=[embedding_msg], | |
| api_name=False | |
| ) | |
| def check_embedding_msg(msg): | |
| if not re.match(regex_pattern, msg): | |
| gr.Warning( | |
| f"Invalid format. Please use like '{format_like}'", | |
| duration=0) | |
| embedding_msg.change( | |
| fn=check_embedding_msg, | |
| inputs=[embedding_msg], | |
| outputs=[], | |
| api_name=False | |
| ) | |
| def run_embed_watermark(file, show_specgram, type, msg): | |
| """ | |
| Embeds a watermark into the given audio file and optionally shows spectrograms. | |
| Args: | |
| file (str): The input file, either a file path. | |
| show_specgram (bool): Whether to return spectrograms for debugging. | |
| type (str): The type of watermark to embed. Accepts "random" or "input". | |
| msg (str): A 2-byte hex string message to embed, e.g., "FFFF". | |
| Returns: | |
| tuple: | |
| - filepath: An audio file representing the output with embedded watermark. | |
| - dict: A spectrogram image of the original signal (if show_specgram is True). | |
| - dict: A spectrogram image of the watermark signal (if show_specgram is True). | |
| """ | |
| if file is None: | |
| raise gr.Erro("No file uploaded", duration=5) | |
| if not re.match(regex_pattern, msg): | |
| raise gr.Error(f"Invalid format. Please use like '{format_like}'", duration=5) | |
| audio_original, rate = load_audio(file) | |
| msg_pt = generate_msg_pt_by_format_string(msg, generator_nbytes) | |
| audio_watermarked = embed_watermark(audio_original, rate, msg_pt) | |
| output = rate, audio_watermarked.squeeze().numpy().astype(np.float32) | |
| if show_specgram: | |
| fig_original = get_waveform_and_specgram(audio_original, rate) | |
| fig_watermarked = get_waveform_and_specgram(audio_watermarked, rate) | |
| return [ | |
| output, | |
| gr.update(visible=True, value=fig_original), | |
| gr.update(visible=True, value=fig_watermarked)] | |
| else: | |
| return [ | |
| output, | |
| gr.update(visible=False), | |
| gr.update(visible=False)] | |
| embedding_btn.click( | |
| fn=run_embed_watermark, | |
| inputs=[embedding_aud, embedding_specgram, embedding_type, embedding_msg], | |
| outputs=[marked_aud, specgram_original, specgram_watermarked] | |
| ) | |
| with gr.TabItem("Detect Watermark"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| detecting_aud = gr.Audio(label="Input Audio", type="filepath") | |
| detecting_btn = gr.Button("Detect Watermark") | |
| with gr.Column(): | |
| predicted_messages = gr.JSON(label="Detected Messages") | |
| def run_detect_watermark(file): | |
| """ | |
| Detects a watermark in the given audio file. | |
| Args: | |
| file (str): Path to the input audio file. | |
| Returns: | |
| str: A Markdown-formatted string containing detection information. | |
| """ | |
| if file is None: | |
| raise gr.Error("No file uploaded", duration=5) | |
| audio_watermarked, rate = load_audio(file) | |
| result, message, pred_prob, message_prob = detect_watermark(audio_watermarked, rate) | |
| _, fromat_msg = generate_format_string_by_msg_pt(message[0], generator_nbytes) | |
| sum_above_05 = (pred_prob[:, 1, :] > 0.5).sum(dim=1) | |
| # Create message output as JSON | |
| message_json = { | |
| "socre": result, | |
| "message": fromat_msg, | |
| "frames_count_all": pred_prob.shape[2], | |
| "frames_count_above_05": sum_above_05[0].item(), | |
| "bits_probability": message_prob[0].tolist(), | |
| "bits_massage": message[0].tolist() | |
| } | |
| return message_json | |
| detecting_btn.click( | |
| fn=run_detect_watermark, | |
| inputs=[detecting_aud], | |
| outputs=[predicted_messages] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0", server_port=7860, mcp_server=True, ssr_mode=False) | |