Update app.py
Browse files
app.py
CHANGED
@@ -41,6 +41,9 @@ def remove_repeated_phrases(text):
|
|
41 |
cleaned_sentences.append(sentence.strip())
|
42 |
return " ".join(cleaned_sentences)
|
43 |
|
|
|
|
|
|
|
44 |
def transcribe_audio(audio_path):
|
45 |
waveform, sample_rate = torchaudio.load(audio_path)
|
46 |
duration = waveform.shape[1] / sample_rate
|
@@ -56,11 +59,11 @@ def transcribe_audio(audio_path):
|
|
56 |
if os.path.exists(temp_filename):
|
57 |
try:
|
58 |
result = pipe(temp_filename)["text"]
|
59 |
-
results.append(result)
|
60 |
finally:
|
61 |
os.remove(temp_filename)
|
62 |
-
return remove_repeated_phrases(" ".join(results))
|
63 |
-
return remove_repeated_phrases(pipe(audio_path)["text"])
|
64 |
|
65 |
# Load translation model
|
66 |
tokenizer = AutoTokenizer.from_pretrained("botisan-ai/mt5-translate-yue-zh")
|
|
|
41 |
cleaned_sentences.append(sentence.strip())
|
42 |
return " ".join(cleaned_sentences)
|
43 |
|
44 |
+
def remove_punctuation(text):
|
45 |
+
return re.sub(r'[^\w\s]', '', text) # Remove all non-word and non-space characters
|
46 |
+
|
47 |
def transcribe_audio(audio_path):
|
48 |
waveform, sample_rate = torchaudio.load(audio_path)
|
49 |
duration = waveform.shape[1] / sample_rate
|
|
|
59 |
if os.path.exists(temp_filename):
|
60 |
try:
|
61 |
result = pipe(temp_filename)["text"]
|
62 |
+
results.append(remove_punctuation(result))
|
63 |
finally:
|
64 |
os.remove(temp_filename)
|
65 |
+
return remove_punctuation(remove_repeated_phrases(" ".join(results)))
|
66 |
+
return remove_punctuation(remove_repeated_phrases(pipe(audio_path)["text"]))
|
67 |
|
68 |
# Load translation model
|
69 |
tokenizer = AutoTokenizer.from_pretrained("botisan-ai/mt5-translate-yue-zh")
|