import torch import torchvision from torchvision import datasets, transforms from torch import nn, optim from torch.nn import functional as F # Cấu hình BATCH_SIZE = 128 DEVICE = torch.device('cpu') class Net(nn.Module): """Mạng CNN cho phân loại MNIST""" def __init__(self): super(Net, self).__init__() self.conv_layers = nn.Sequential( nn.Conv2d(1, 10, kernel_size=5), nn.MaxPool2d(2), nn.ReLU(), nn.Conv2d(10, 20, kernel_size=5), nn.Dropout(), nn.MaxPool2d(2), nn.ReLU(), ) self.fc_layers = nn.Sequential( nn.Linear(320, 50), nn.ReLU(), nn.Dropout(), nn.Linear(50, 10), nn.Softmax(dim=1) ) def forward(self, x): x = self.conv_layers(x) x = x.view(-1, 320) x = self.fc_layers(x) return x def train(model, device, train_loader, optimizer, epoch): """Hàm train model cho 1 epoch""" model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output.log(), target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(model, device, test_loader): """Hàm test model""" model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output.log(), target).item() pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) # Tạo data loaders train_loader = torch.utils.data.DataLoader( datasets.MNIST('mnist_data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor() ])), batch_size=BATCH_SIZE, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('mnist_data', train=False, transform=transforms.Compose([ transforms.ToTensor() ])), batch_size=BATCH_SIZE, shuffle=True) def train_model(model, num_epochs): """Hàm train model với số epochs chỉ định""" optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) for epoch in range(1, num_epochs + 1): train(model, DEVICE, train_loader, optimizer, epoch) test(model, DEVICE, test_loader)