Spaces:
Running
Running
update
Browse files- .gitignore +1 -0
- app.py +35 -47
- checkpoints.json +0 -1
- checkpoints/Multilingual/ACOS/multilingual-acos.zip +2 -2
- emergency_notification.txt +1 -0
- requirements.txt +1 -1
.gitignore
CHANGED
@@ -32,6 +32,7 @@ glove.840B.300d.txt
|
|
32 |
glove.42B.300d.txt
|
33 |
glove.twitter.27B.txt
|
34 |
*CHECKPOINT/
|
|
|
35 |
|
36 |
# project main files
|
37 |
release_note.json
|
|
|
32 |
glove.42B.300d.txt
|
33 |
glove.twitter.27B.txt
|
34 |
*CHECKPOINT/
|
35 |
+
checkpoints.json
|
36 |
|
37 |
# project main files
|
38 |
release_note.json
|
app.py
CHANGED
@@ -22,6 +22,7 @@ from pyabsa.utils.data_utils.dataset_manager import detect_infer_dataset
|
|
22 |
|
23 |
download_all_available_datasets()
|
24 |
|
|
|
25 |
def get_atepc_example(dataset):
|
26 |
task = TaskCodeOption.Aspect_Polarity_Classification
|
27 |
dataset_file = detect_infer_dataset(atepc_dataset_items[dataset], task)
|
@@ -83,6 +84,7 @@ def get_acos_example(dataset):
|
|
83 |
|
84 |
try:
|
85 |
from pyabsa import AspectTermExtraction as ATEPC
|
|
|
86 |
atepc_dataset_items = {dataset.name: dataset for dataset in ATEPC.ATEPCDatasetList()}
|
87 |
atepc_dataset_dict = {
|
88 |
dataset.name: get_atepc_example(dataset.name)
|
@@ -112,11 +114,11 @@ except Exception as e:
|
|
112 |
try:
|
113 |
from pyabsa import ABSAInstruction
|
114 |
|
115 |
-
acos_dataset_items = {dataset.name: dataset for dataset in ABSAInstruction.ACOSDatasetList()
|
116 |
acos_dataset_dict = {
|
117 |
-
dataset.name: get_acos_example(dataset.name) for dataset in ABSAInstruction.ACOSDatasetList()
|
118 |
}
|
119 |
-
quadruple_extractor = ABSAInstruction.ABSAGenerator(
|
120 |
except Exception as e:
|
121 |
print(e)
|
122 |
acos_dataset_items = {}
|
@@ -154,7 +156,7 @@ def perform_aste_inference(text, dataset):
|
|
154 |
|
155 |
pred_triplets = pd.DataFrame(result["Triplets"])
|
156 |
true_triplets = pd.DataFrame(result["True Triplets"])
|
157 |
-
return pred_triplets, true_triplets, "{}".format(text)
|
158 |
|
159 |
|
160 |
def perform_acos_inference(text, dataset):
|
@@ -163,33 +165,42 @@ def perform_acos_inference(text, dataset):
|
|
163 |
random.randint(0, len(acos_dataset_dict[dataset]) - 1)
|
164 |
]
|
165 |
|
166 |
-
raw_output = quadruple_extractor.predict(text)
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
for sub_output in output.split('|'):
|
171 |
-
if 'aspect' in sub_output:
|
172 |
-
data['aspect'] = sub_output.split(':')[1]
|
173 |
-
elif 'opinion' in sub_output:
|
174 |
-
data['opinion'] = sub_output.split(':')[1]
|
175 |
-
elif 'sentiment' in sub_output:
|
176 |
-
data['sentiment'] = sub_output.split(':')[1]
|
177 |
-
elif 'polarity' in sub_output:
|
178 |
-
data['polarity'] = sub_output.split(':')[1]
|
179 |
-
elif 'category' in sub_output:
|
180 |
-
try:
|
181 |
-
data['category'] = sub_output.split(':')[1]
|
182 |
-
except:
|
183 |
-
data['category'] = ''
|
184 |
-
|
185 |
-
result = pd.DataFrame.from_dict(data, orient='index').T
|
186 |
return result, text
|
187 |
|
|
|
188 |
demo = gr.Blocks()
|
189 |
|
190 |
with demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
|
|
|
|
192 |
|
|
|
|
|
|
|
|
|
|
|
193 |
with gr.Row():
|
194 |
if triplet_extractor:
|
195 |
with gr.Column():
|
@@ -249,30 +260,7 @@ with demo:
|
|
249 |
inputs=[atepc_input_sentence, atepc_dataset_ids],
|
250 |
outputs=[atepc_output_df, atepc_output_text],
|
251 |
)
|
252 |
-
if quadruple_extractor:
|
253 |
-
with gr.Row():
|
254 |
-
with gr.Column():
|
255 |
-
gr.Markdown("# <p align='center'>Aspect Category Opinion Sentiment Extraction !</p>")
|
256 |
|
257 |
-
acos_input_sentence = gr.Textbox(
|
258 |
-
placeholder="Leave this box blank and choose a dataset will give you a random example...",
|
259 |
-
label="Example:",
|
260 |
-
)
|
261 |
-
acos_dataset_ids = gr.Radio(
|
262 |
-
choices=[dataset.name for dataset in ABSAInstruction.ACOSDatasetList()],
|
263 |
-
value="Restaurant16",
|
264 |
-
label="Datasets",
|
265 |
-
)
|
266 |
-
acos_inference_button = gr.Button("Let's go!")
|
267 |
-
|
268 |
-
acos_output_text = gr.TextArea(label="Example:")
|
269 |
-
acos_output_pred_df = gr.DataFrame(label="Predicted Triplets:")
|
270 |
-
|
271 |
-
acos_inference_button.click(
|
272 |
-
fn=perform_acos_inference,
|
273 |
-
inputs=[acos_input_sentence, acos_dataset_ids],
|
274 |
-
outputs=[acos_output_pred_df, acos_output_text],
|
275 |
-
)
|
276 |
gr.Markdown(
|
277 |
"""### GitHub Repo: [PyABSA V2](https://github.com/yangheng95/PyABSA)
|
278 |
### Author: [Heng Yang](https://github.com/yangheng95) (杨恒)
|
|
|
22 |
|
23 |
download_all_available_datasets()
|
24 |
|
25 |
+
|
26 |
def get_atepc_example(dataset):
|
27 |
task = TaskCodeOption.Aspect_Polarity_Classification
|
28 |
dataset_file = detect_infer_dataset(atepc_dataset_items[dataset], task)
|
|
|
84 |
|
85 |
try:
|
86 |
from pyabsa import AspectTermExtraction as ATEPC
|
87 |
+
|
88 |
atepc_dataset_items = {dataset.name: dataset for dataset in ATEPC.ATEPCDatasetList()}
|
89 |
atepc_dataset_dict = {
|
90 |
dataset.name: get_atepc_example(dataset.name)
|
|
|
114 |
try:
|
115 |
from pyabsa import ABSAInstruction
|
116 |
|
117 |
+
acos_dataset_items = {dataset.name: dataset for dataset in ABSAInstruction.ACOSDatasetList()}
|
118 |
acos_dataset_dict = {
|
119 |
+
dataset.name: get_acos_example(dataset.name) for dataset in ABSAInstruction.ACOSDatasetList()
|
120 |
}
|
121 |
+
quadruple_extractor = ABSAInstruction.ABSAGenerator("multilingual")
|
122 |
except Exception as e:
|
123 |
print(e)
|
124 |
acos_dataset_items = {}
|
|
|
156 |
|
157 |
pred_triplets = pd.DataFrame(result["Triplets"])
|
158 |
true_triplets = pd.DataFrame(result["True Triplets"])
|
159 |
+
return pred_triplets, true_triplets, "{}".format(text.split('####')[0])
|
160 |
|
161 |
|
162 |
def perform_acos_inference(text, dataset):
|
|
|
165 |
random.randint(0, len(acos_dataset_dict[dataset]) - 1)
|
166 |
]
|
167 |
|
168 |
+
raw_output = quadruple_extractor.predict(text.split('####')[0], max_length=128)
|
169 |
+
|
170 |
+
result = raw_output['Quadruples']
|
171 |
+
result = pd.DataFrame(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
return result, text
|
173 |
|
174 |
+
|
175 |
demo = gr.Blocks()
|
176 |
|
177 |
with demo:
|
178 |
+
with gr.Row():
|
179 |
+
|
180 |
+
if quadruple_extractor:
|
181 |
+
with gr.Row():
|
182 |
+
with gr.Column():
|
183 |
+
gr.Markdown("# <p align='center'> ABSA Quadruple Extraction (Experimental) </p>")
|
184 |
+
|
185 |
+
acos_input_sentence = gr.Textbox(
|
186 |
+
placeholder="Leave this box blank and choose a dataset will give you a random example...",
|
187 |
+
label="Example:",
|
188 |
+
)
|
189 |
+
acos_dataset_ids = gr.Radio(
|
190 |
+
choices=[dataset.name for dataset in ABSAInstruction.ACOSDatasetList()],
|
191 |
+
value="Laptop14",
|
192 |
+
label="Datasets",
|
193 |
+
)
|
194 |
+
acos_inference_button = gr.Button("Let's go!")
|
195 |
|
196 |
+
acos_output_text = gr.TextArea(label="Example:")
|
197 |
+
acos_output_pred_df = gr.DataFrame(label="Predicted Triplets:")
|
198 |
|
199 |
+
acos_inference_button.click(
|
200 |
+
fn=perform_acos_inference,
|
201 |
+
inputs=[acos_input_sentence, acos_dataset_ids],
|
202 |
+
outputs=[acos_output_pred_df, acos_output_text],
|
203 |
+
)
|
204 |
with gr.Row():
|
205 |
if triplet_extractor:
|
206 |
with gr.Column():
|
|
|
260 |
inputs=[atepc_input_sentence, atepc_dataset_ids],
|
261 |
outputs=[atepc_output_df, atepc_output_text],
|
262 |
)
|
|
|
|
|
|
|
|
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
gr.Markdown(
|
265 |
"""### GitHub Repo: [PyABSA V2](https://github.com/yangheng95/PyABSA)
|
266 |
### Author: [Heng Yang](https://github.com/yangheng95) (杨恒)
|
checkpoints.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2.0.0": {"APC": {"multilingual": {"id": "", "Training Model": "FAST-LSA-T-V2-Deberta", "Training Dataset": "APCDatasetList.Multilingual", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lcf_bert_Multilingual_acc_87.18_f1_83.11.zip", "Author": "H, Yang ([email protected])"}, "multilingual2": {"id": "", "Training Model": "FAST-LSA-T-V2-Deberta", "Training Dataset": "APCDatasetList.Multilingual", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lcf_bert_Multilingual_acc_82.66_f1_82.06.zip", "Author": "H, Yang ([email protected])"}, "english": {"id": "", "Training Model": "FAST-LSA-T-V2-Deberta", "Training Dataset": "APCDatasetList.English", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lsa_t_v2_English_acc_82.21_f1_81.81.zip", "Author": "H, Yang ([email protected])"}, "chinese": {"id": "", "Training Model": "FAST-LSA-T-V2-Deberta", "Training Dataset": "APCDatasetList.Chinese", "Language": "Chinese", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lsa_t_v2_Chinese_acc_96.0_f1_95.1.zip", "Author": "H, Yang ([email protected])"}}, "ATEPC": {"multilingual": {"id": "", "Training Model": "FAST-LCF-ATEPC", "Training Dataset": "ABSADatasets.Multilingual", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "fast_lcf_atepc_Multilingual_cdw_apcacc_85.1_apcf1_80.2_atef1_76.45.zip", "Author": "H, Yang ([email protected])"}, "multilingual-original": {"id": "", "Training Model": "FAST-LCF-ATEPC", "Training Dataset": "ABSADatasets.Multilingual", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "fast_lcf_atepc_Multilingual_cdw_apcacc_80.81_apcf1_73.75_atef1_76.01.zip", "Author": "H, Yang ([email protected])"}, "multilingual2": {"id": "", "Training Model": "FAST-LCF-ATEPC", "Training Dataset": "ABSADatasets.Multilingual", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "fast_lcf_atepc_Multilingual_cdw_apcacc_78.08_apcf1_77.81_atef1_75.41.zip", "Author": "H, Yang ([email protected])"}, "english": {"id": "", "Training Model": "FAST-LCF-ATEPC", "Training Dataset": "ATEPCDatasetList.English", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lcf_atepc_English_cdw_apcacc_82.36_apcf1_81.89_atef1_75.43.zip", "Author": "H, Yang ([email protected])"}, "chinese": {"id": "", "Training Model": "FAST-LCF-ATEPC", "Training Dataset": "ATEPCDatasetList.Chinese", "Language": "Chinese", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lcf_atepc_Chinese_cdw_apcacc_96.22_apcf1_95.32_atef1_78.73.zip", "Author": "H, Yang ([email protected])"}}, "RNAC": {"degrad_lstm": {"id": "", "Training Model": "LSTM", "Training Dataset": "ABSADatasets.Multilingual", "Language": "RNA", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "lstm_degrad_acc_85.26_f1_84.62.zip", "Author": "H, Yang ([email protected])"}, "degrad_bert": {"id": "", "Training Model": "MLP", "Training Dataset": "Degrad", "Language": "RNA", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "bert_mlp_degrad_acc_87.44_f1_86.99.zip", "Author": "H, Yang ([email protected])"}}, "TAD": {"tad-sst2": {"id": "", "Training Model": "TAD", "Training Dataset": "SST2", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.15+", "Checkpoint File": "TAD-SST2.zip", "Author": "H, Yang ([email protected])"}, "tad-agnews10k": {"id": "", "Training Model": "TAD", "Training Dataset": "AGNews", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.15+", "Checkpoint File": "TAD-AGNews10K.zip", "Author": "H, Yang ([email protected])"}, "tad-amazon": {"id": "", "Training Model": "TAD", "Training Dataset": "AGNews", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.15+", "Checkpoint File": "TAD-Amazon.zip", "Author": "H, Yang ([email protected])"}}, "CDD": {"promise": {"id": "", "Training Model": "CodeT5-small", "Training Dataset": "Promise", "Language": "Code", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "bert_mlp_all_cpdp_acc_75.33_f1_73.52.zip", "Author": "H, Yang ([email protected])"}}, "ASTE": {"english1": {"id": "", "Training Model": "DeBERTa-v3-Base", "Training Dataset": "SemEval", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "2.1.1+", "Checkpoint File": "EMCGCN_SemEval_f1_74.01.zip", "Author": "H, Yang ([email protected])"}, "english": {"id": "", "Training Model": "DeBERTa-v3-Base", "Training Dataset": "SemEval", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "2.1.1+", "Checkpoint File": "ASTE-EMCGCN_SemEval_f1_74.71.zip", "Author": "H, Yang ([email protected])"}, "multilingual": {"id": "", "Training Model": "DeBERTa-v3-Base", "Training Dataset": "SemEval + Synthetic + Chinese_Zhang datasets", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "2.1.1+", "Checkpoint File": "EMCGCN-Multilingual-f1_51.95.zip", "Author": "H, Yang ([email protected])"}}, "ACOS": {"multilingual": {"id": "", "Training Model": "DeBERTa-v3-Base", "Training Dataset": "SemEval + Synthetic + Chinese_Zhang datasets", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "2.1.8+", "Checkpoint File": "ACOS.zip", "Author": "H, Yang ([email protected])"}}, "UPPERTASKCODE": {"promise": {"id": "", "Training Model": "CodeT5-small", "Training Dataset": "DatasetName", "Language": "", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "lstm_degrad_acc_85.26_f1_84.62.zip", "Author": "H, Yang ([email protected])"}}}}
|
|
|
|
checkpoints/Multilingual/ACOS/multilingual-acos.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:550bd9d9c5c82b8e34236a3819b70fd2da3e8b1058566ca15ae1f2a4190a5486
|
3 |
+
size 920064620
|
emergency_notification.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
|
2 |
[New Feature] Aspect Sentiment Triplet Extraction from v2.1.0 test version (https://github.com/yangheng95/PyABSA/tree/v2/examples-v2/aspect_sentiment_triplet_extration)
|
|
|
3 |
|
4 |
If you find any problems, please report them on GitHub. Thanks!
|
5 |
The v2.x versions are not compatible with Google Colab. Please downgrade to 1.16.27.
|
|
|
1 |
|
2 |
[New Feature] Aspect Sentiment Triplet Extraction from v2.1.0 test version (https://github.com/yangheng95/PyABSA/tree/v2/examples-v2/aspect_sentiment_triplet_extration)
|
3 |
+
[New Feature] Aspect CategoryOpinion Sentiment Quadruple Extraction from v2.2.0 test version (https://github.com/yangheng95/PyABSA/tree/v2/examples-v2/aspect_opinion_sentiment_category_extraction)
|
4 |
|
5 |
If you find any problems, please report them on GitHub. Thanks!
|
6 |
The v2.x versions are not compatible with Google Colab. Please downgrade to 1.16.27.
|
requirements.txt
CHANGED
@@ -1 +1 @@
|
|
1 |
-
pyabsa>=2.1.
|
|
|
1 |
+
pyabsa>=2.1.12
|