yangyang158 commited on
Commit
64cd325
·
1 Parent(s): e31fc80

Deploy Kronos API service

Browse files
API.md ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Kronos API 文档
2
+
3
+ 本文档提供有关 Kronos 预测服务的 API 端点的详细信息。
4
+
5
+ ## 基础 URL
6
+
7
+ 基础 URL 将取决于您的部署环境。
8
+ - **本地 Docker**: `http://localhost:7860`
9
+ - **Hugging Face Spaces**: `https://<your-space-name>.hf.space`
10
+
11
+ ## 身份验证
12
+
13
+ 所有端点(`/api/model-status` 除外)都受到保护,需要 API 密钥。密钥必须在请求的 `Authorization` 头中提供。
14
+
15
+ - **Header**: `Authorization: Bearer <YOUR_API_KEY>`
16
+
17
+ 未能提供有效密钥将导致 `401 Unauthorized` 错误。
18
+
19
+ ---
20
+
21
+ ## 端点
22
+
23
+ ### 1. 获取可用模型列表
24
+
25
+ 获取服务端所有可用模型的详细信息。
26
+
27
+ - **URL**: `/api/available-models`
28
+ - **方法**: `GET`
29
+ - **身份验证**: 不需要。
30
+
31
+ **成功响应 (200 OK)**
32
+ ```json
33
+ {
34
+ "kronos-mini": {
35
+ "name": "Kronos-mini",
36
+ "model_id": "NeoQuasar/Kronos-mini",
37
+ "tokenizer_id": "NeoQuasar/Kronos-Tokenizer-2k",
38
+ "context_length": 2048,
39
+ "params": "4.1M",
40
+ "description": "Lightweight model, suitable for fast prediction"
41
+ },
42
+ "kronos-small": {
43
+ "name": "Kronos-small",
44
+ "model_id": "NeoQuasar/Kronos-small",
45
+ "tokenizer_id": "NeoQuasar/Kronos-Tokenizer-base",
46
+ "context_length": 512,
47
+ "params": "24.7M",
48
+ "description": "Small model, balanced performance and speed"
49
+ },
50
+ "kronos-base": {
51
+ "name": "Kronos-base",
52
+ "model_id": "NeoQuasar/Kronos-base",
53
+ "tokenizer_id": "NeoQuasar/Kronos-Tokenizer-base",
54
+ "context_length": 512,
55
+ "params": "102.3M",
56
+ "description": "Base model, provides better prediction quality"
57
+ }
58
+ }
59
+ ```
60
+
61
+ ### 2. 获取当前模型状态
62
+
63
+ 检查当前是否有模型被加载到内存中,并返回其详细信息。
64
+
65
+ - **URL**: `/api/model-status`
66
+ - **方法**: `GET`
67
+ - **身份验证**: 不需要。
68
+
69
+ **成功响应 (200 OK)**
70
+ ```json
71
+ {
72
+ "status": "loaded",
73
+ "model_key": "kronos-base",
74
+ "model_info": {
75
+ "name": "Kronos-base",
76
+ "model_id": "NeoQuasar/Kronos-base",
77
+ "tokenizer_id": "NeoQuasar/Kronos-Tokenizer-base",
78
+ "context_length": 512,
79
+ "params": "102.3M",
80
+ "description": "Base model, provides better prediction quality"
81
+ }
82
+ }
83
+ ```
84
+
85
+ **模型未加载响应 (200 OK)**
86
+ ```json
87
+ {
88
+ "status": "not_loaded"
89
+ }
90
+ ```
91
+
92
+ ### 3. 加载模型
93
+
94
+ 手动将一个指定的模型加载到内存中。
95
+
96
+ - **URL**: `/api/load-model`
97
+ - **方法**: `POST`
98
+ - **身份验证**: 需要。
99
+
100
+ **请求体 (Request Body)**
101
+ ```json
102
+ {
103
+ "model_key": "kronos-base",
104
+ "force_reload": false
105
+ }
106
+ ```
107
+ - `model_key` (可选): 模型的键名。默认为 `kronos-base`。**该值必须是 `/api/available-models` 端点返回的键之一** (例如, `"kronos-mini"`)。
108
+ - `force_reload` (可选): 如果为 `true`,即使请求的模型已在内存中,也会强制重新加载。默认为 `false`。
109
+
110
+ **成功响应 (200 OK)**
111
+ ```json
112
+ {
113
+ "status": "Model 'Kronos-base' loaded successfully.",
114
+ "model_info": {
115
+ "name": "Kronos-base",
116
+ "model_id": "NeoQuasar/Kronos-base",
117
+ "tokenizer_id": "NeoQuasar/Kronos-Tokenizer-base",
118
+ "context_length": 512,
119
+ "params": "102.3M",
120
+ "description": "Base model, provides better prediction quality"
121
+ }
122
+ }
123
+ ```
124
+
125
+ **错误响应 (400 Bad Request)**
126
+ 如果提供了无效的 `model_key`。
127
+ ```json
128
+ {
129
+ "error": "Invalid model_key. Please choose from the allowed models.",
130
+ "allowed_models": [
131
+ "kronos-mini",
132
+ "kronos-small",
133
+ "kronos-base"
134
+ ]
135
+ }
136
+ ```
137
+
138
+ ### 4. 获取预测结果
139
+
140
+ 提交 K 线数据并接收预测结果。
141
+
142
+ - **URL**: `/api/predict_from_data`
143
+ - **方法**: `POST`
144
+ - **身份验证**: 需要。
145
+
146
+ **请求体 (Request Body)**
147
+ ```json
148
+ {
149
+ "k_lines": [
150
+ [1711324800000, "18.545", "19.514", "18.385", "19.395", "2080487", ...],
151
+ [1711411200000, "19.397", "20.759", "19.356", "20.032", "3020519", ...],
152
+ [1711497600000, "20.030", "20.211", "19.011", "19.303", "2351359", ...]
153
+ ],
154
+ "prediction_params": {
155
+ "pred_len": 120
156
+ }
157
+ }
158
+ ```
159
+ - `k_lines` (必需): 代表 K 线数据的数组的数组。格式应与币安 API 标准响应匹配(时间戳, 开盘价, 最高价, 最低价, 收盘价, 成交量, ...)。模型仅使用前 6 列。
160
+ - `prediction_params` (可选): 用于预测参数的字典。
161
+ - `pred_len` (可选): 要预测的未来时间步数。默认为 `120`。
162
+
163
+ **成功响应 (200 OK)**
164
+ ```json
165
+ {
166
+ "success": true,
167
+ "prediction_params": {
168
+ "pred_len": 120
169
+ },
170
+ "prediction_results": [
171
+ {
172
+ "timestamp": "2024-07-01T00:00:00",
173
+ "open": 150.1,
174
+ "high": 152.3,
175
+ "low": 149.8,
176
+ "close": 151.5,
177
+ "volume": 100000.0
178
+ },
179
+ {
180
+ "timestamp": "2024-07-01T01:00:00",
181
+ "open": 151.5,
182
+ "high": 153.0,
183
+ "low": 151.0,
184
+ "close": 152.8,
185
+ "volume": 120000.0
186
+ }
187
+ ]
188
+ }
189
+ ```
190
+ *(注意: `prediction_results` 是一个示例;实际值会有所不同。)*
191
+
192
+ **错误响应 (400 Bad Request)**
193
+ 如果模型尚未加载。
194
+ ```json
195
+ {
196
+ "error": "模型未加载。请先调用 /api/load-model。"
197
+ }
Dockerfile ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Stage 1: Build stage with dependencies
2
+ FROM python:3.10-slim as builder
3
+
4
+ WORKDIR /app
5
+
6
+ # Install build dependencies
7
+ RUN pip install --upgrade pip
8
+
9
+ # Copy requirements first to leverage Docker cache
10
+ COPY requirements.txt .
11
+
12
+ # Install python dependencies
13
+ RUN pip install --no-cache-dir -r requirements.txt
14
+
15
+ # ---
16
+
17
+ # Stage 2: Final stage
18
+ FROM python:3.10-slim
19
+
20
+ WORKDIR /app
21
+
22
+ # Create a non-root user
23
+ RUN useradd --create-home appuser
24
+ USER appuser
25
+
26
+ # Copy installed dependencies from builder stage
27
+ COPY --from=builder /usr/local/lib/python3.10/site-packages /usr/local/lib/python3.10/site-packages
28
+ COPY --from=builder /usr/local/bin /usr/local/bin
29
+
30
+ # Copy the application code and model files
31
+ # Note: The Docker build context should be the parent directory of 'kronos-api-service'
32
+ COPY --chown=appuser:appuser ./kronos-api-service/ .
33
+
34
+ # Expose the port the app runs on
35
+ EXPOSE 7860
36
+
37
+ # Set the default command to run the app with Gunicorn
38
+ CMD ["gunicorn", "--bind", "0.0.0.0:7860", "--workers", "2", "app:app"]
README.md CHANGED
@@ -1,12 +1,57 @@
1
- ---
2
- title: Kronos
3
- emoji: 🏆
4
- colorFrom: red
5
- colorTo: indigo
6
- sdk: docker
7
- pinned: false
8
- license: mit
9
- short_description: 本项目为 Kronos 金融预测模型提供了一个独立的、容器化的 API 服务。它经过优化,可部署在 Hugging Fa
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Kronos API 服务
2
+
3
+ 本项目为 Kronos 金融预测模型提供了一个独立的、容器化的 API 服务。它经过优化,可部署在 Hugging Face Spaces 或任何其他支持 Docker 的云环境中。
4
+
5
+ ## 功能特性
6
+
7
+ - **纯 API 服务**: 无前端界面,专注于性能和集成。
8
+ - **灵活的数据输入**: 通过 API 直接接受标准的 K 线数据格式(数组的数组)。
9
+ - **安全**: API 端点受持有者令牌(Bearer Token)认证保护。
10
+ - **容器化**: 使用 Docker 轻松部署和扩展。
11
+
12
+ ## 开始使用
13
+
14
+ ### 1. 本地开发与测试
15
+
16
+ 您可以使用 Docker Compose 在本地运行此服务。
17
+
18
+ **先决条件**:
19
+ - 已安装 Docker 和 Docker Compose。
20
+
21
+ **步骤**:
22
+ 1. 进入 `kronos-api-service` 目录:
23
+ ```bash
24
+ cd kronos-api-service
25
+ ```
26
+ 2. 启动服务:
27
+ ```bash
28
+ docker-compose up --build
29
+ ```
30
+ 服务将在 `http://localhost:7860` 上可用。用于本地测试的 API 密钥在 `docker-compose.yml` 文件中定义(默认为 `my-secret-local-key`)。
31
+
32
+ ### 2. 部署到 Hugging Face Spaces
33
+
34
+ 该服务旨在轻松部署到 Hugging Face Space。
35
+
36
+ **步骤**:
37
+ 1. 在 Hugging Face 上创建一个新的 **Docker Space**。
38
+ 2. 在您的 Space 设置中,进入 **Secrets** 并添加一个新的密钥:
39
+ - **名称**: `KRONOS_API_KEY`
40
+ - **值**: `your_super_secret_api_key` (请替换为您自己的强密钥)
41
+ 3. 将 `kronos-api-service` 目录下的**所有内容**推送到您的 Space Git 仓库的根目录。您的 Space 仓库结构应如下所示:
42
+ ```
43
+ .
44
+ ├── app.py
45
+ ├── Dockerfile
46
+ ├── requirements.txt
47
+ ├── model/
48
+ │ ├── __init__.py
49
+ │ ├── kronos.py
50
+ │ └── module.py
51
+ └── ... (此项目中的所有其他文件)
52
+ ```
53
+ 4. Hugging Face Spaces 将自动从您的 `Dockerfile` 构建镜像并启动服务。您的 API 将在 Space 提供的 URL 上线。
54
+
55
+ ## API 使用方法
56
+
57
+ 有关端点、请求/响应格式和示例的详细信息,请参阅详细的 **`API.md`** 文档。
__pycache__/app.cpython-312.pyc ADDED
Binary file (10.2 kB). View file
 
app.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import logging
4
+ from functools import wraps
5
+ from flask import Flask, request, jsonify
6
+ import torch
7
+ import pandas as pd
8
+ from huggingface_hub import hf_hub_download
9
+
10
+ # Configure logging
11
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
12
+
13
+ # Add parent directory to sys.path to allow imports from 'model'
14
+ try:
15
+ from model.kronos import Kronos, KronosTokenizer, KronosPredictor
16
+ except ImportError as e:
17
+ logging.error(f"Could not import from model.kronos: {e}")
18
+ sys.exit(1)
19
+
20
+ # --- Globals ---
21
+ app = Flask(__name__)
22
+ predictor = None
23
+ model_name_global = "kronos-base" # Use key now
24
+ API_KEY = os.environ.get("KRONOS_API_KEY")
25
+ AVAILABLE_MODELS = {
26
+ 'kronos-mini': {
27
+ 'name': 'Kronos-mini',
28
+ 'model_id': 'NeoQuasar/Kronos-mini',
29
+ 'tokenizer_id': 'NeoQuasar/Kronos-Tokenizer-2k',
30
+ 'context_length': 2048,
31
+ 'params': '4.1M',
32
+ 'description': 'Lightweight model, suitable for fast prediction'
33
+ },
34
+ 'kronos-small': {
35
+ 'name': 'Kronos-small',
36
+ 'model_id': 'NeoQuasar/Kronos-small',
37
+ 'tokenizer_id': 'NeoQuasar/Kronos-Tokenizer-base',
38
+ 'context_length': 512,
39
+ 'params': '24.7M',
40
+ 'description': 'Small model, balanced performance and speed'
41
+ },
42
+ 'kronos-base': {
43
+ 'name': 'Kronos-base',
44
+ 'model_id': 'NeoQuasar/Kronos-base',
45
+ 'tokenizer_id': 'NeoQuasar/Kronos-Tokenizer-base',
46
+ 'context_length': 512,
47
+ 'params': '102.3M',
48
+ 'description': 'Base model, provides better prediction quality'
49
+ }
50
+ }
51
+
52
+ # --- Helper Functions ---
53
+
54
+ def download_model_from_hf(model_name, local_dir="."):
55
+ """Downloads a model from Hugging Face Hub."""
56
+ logging.info(f"Downloading model '{model_name}' from Hugging Face Hub...")
57
+ try:
58
+ hf_hub_download(repo_id=model_name, filename="config.json", local_dir=local_dir)
59
+ hf_hub_download(repo_id=model_name, filename="pytorch_model.bin", local_dir=local_dir)
60
+ logging.info("Model downloaded successfully.")
61
+ return True
62
+ except Exception as e:
63
+ logging.error(f"Failed to download model: {e}")
64
+ return False
65
+
66
+ # --- API Authentication ---
67
+
68
+ def require_api_key(f):
69
+ """Decorator to protect routes with an API key."""
70
+ @wraps(f)
71
+ def decorated_function(*args, **kwargs):
72
+ # If KRONOS_API_KEY is not set on the server, skip authentication (for local/dev)
73
+ if not API_KEY:
74
+ logging.warning("API key not set. Skipping authentication.")
75
+ return f(*args, **kwargs)
76
+
77
+ auth_header = request.headers.get('Authorization')
78
+ if not auth_header or not auth_header.startswith('Bearer '):
79
+ return jsonify({'error': 'Authorization header is missing or invalid. Use Bearer token.'}), 401
80
+
81
+ token = auth_header.split(' ')[1]
82
+ if token != API_KEY:
83
+ return jsonify({'error': 'Invalid API Key.'}), 401
84
+
85
+ return f(*args, **kwargs)
86
+ return decorated_function
87
+
88
+ # --- API Endpoints ---
89
+
90
+ @app.route('/api/load-model', methods=['POST'])
91
+ @require_api_key
92
+ def load_model_endpoint():
93
+ """Loads the prediction model into memory."""
94
+ global predictor, model_name_global
95
+
96
+ json_data = request.get_json()
97
+ model_key = json_data.get('model_key', model_name_global) # Changed to model_key
98
+ force_reload = json_data.get('force_reload', False)
99
+
100
+ # Validate if the requested model is in the allowed list
101
+ if model_key not in AVAILABLE_MODELS:
102
+ return jsonify({
103
+ 'error': f"Invalid model_key. Please choose from the allowed models.",
104
+ 'allowed_models': list(AVAILABLE_MODELS.keys())
105
+ }), 400
106
+
107
+ if predictor and not force_reload and model_name_global == model_key:
108
+ return jsonify({'status': 'Model already loaded.'})
109
+
110
+ try:
111
+ model_config = AVAILABLE_MODELS[model_key]
112
+ model_id = model_config['model_id']
113
+ tokenizer_id = model_config['tokenizer_id']
114
+
115
+ logging.info(f"Attempting to load model: {model_id}")
116
+ logging.info(f"Attempting to load tokenizer: {tokenizer_id}")
117
+
118
+ # Determine device
119
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
120
+ logging.info(f"Using device: {device}")
121
+
122
+ # --- Proxy Setup ---
123
+ # Check for proxy settings in environment variables, similar to the webui fix
124
+ proxies = {
125
+ "http": os.environ.get("HTTP_PROXY"),
126
+ "https": os.environ.get("HTTPS_PROXY"),
127
+ }
128
+ # Filter out None values
129
+ proxies = {k: v for k, v in proxies.items() if v}
130
+ if proxies:
131
+ logging.info(f"Using proxies: {proxies}")
132
+
133
+ # Load model and tokenizer with proxy support
134
+ model = Kronos.from_pretrained(model_id, proxies=proxies if proxies else None)
135
+ tokenizer = KronosTokenizer.from_pretrained(tokenizer_id, proxies=proxies if proxies else None)
136
+
137
+ # Create the predictor wrapper
138
+ predictor = KronosPredictor(model, tokenizer, device=device)
139
+ model_name_global = model_key
140
+
141
+ logging.info(f"Model '{model_config['name']}' loaded successfully.")
142
+ return jsonify({
143
+ 'status': f"Model '{model_config['name']}' loaded successfully.",
144
+ 'model_info': model_config
145
+ })
146
+ except Exception as e:
147
+ logging.error(f"Error loading model: {e}")
148
+ return jsonify({'error': str(e)}), 500
149
+
150
+ @app.route('/api/model-status', methods=['GET'])
151
+ def model_status():
152
+ """Checks if the model is loaded."""
153
+ if predictor:
154
+ return jsonify({
155
+ 'status': 'loaded',
156
+ 'model_key': model_name_global,
157
+ 'model_info': AVAILABLE_MODELS.get(model_name_global)
158
+ })
159
+ else:
160
+ return jsonify({'status': 'not_loaded'})
161
+
162
+ @app.route('/api/available-models', methods=['GET'])
163
+ def get_available_models():
164
+ """Returns the list of available models and their details."""
165
+ return jsonify(AVAILABLE_MODELS)
166
+
167
+ @app.route('/api/predict_from_data', methods=['POST'])
168
+ @require_api_key
169
+ def predict_from_data():
170
+ """
171
+ Receives raw K-line data in the request body, makes a prediction,
172
+ and returns the results.
173
+ """
174
+ if not predictor:
175
+ return jsonify({'error': 'Model not loaded. Please call /api/load-model first.'}), 400
176
+
177
+ data = request.get_json()
178
+ if not data or 'k_lines' not in data:
179
+ return jsonify({'error': 'Missing "k_lines" in request body.'}), 400
180
+
181
+ k_lines = data['k_lines']
182
+ params = data.get('prediction_params', {})
183
+ pred_len = params.get('pred_len', 120)
184
+
185
+ try:
186
+ # Define column names based on standard Binance API format
187
+ # We only need the first 6 columns for the model
188
+ columns = [
189
+ 'timestamp', 'open', 'high', 'low', 'close', 'volume',
190
+ 'close_time', 'quote_asset_volume', 'number_of_trades',
191
+ 'taker_buy_base_asset_volume', 'taker_buy_quote_asset_volume', 'ignore'
192
+ ]
193
+
194
+ # Ensure we only use the first 12 columns if more are provided
195
+ k_lines_standardized = [line[:12] for line in k_lines]
196
+
197
+ df = pd.DataFrame(k_lines_standardized, columns=columns)
198
+
199
+ # --- Data Type Conversion ---
200
+ df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
201
+ numeric_cols = ['open', 'high', 'low', 'close', 'volume']
202
+ for col in numeric_cols:
203
+ df[col] = pd.to_numeric(df[col])
204
+
205
+ # Keep only the necessary columns for the model
206
+ df_model_input = df[['timestamp', 'open', 'high', 'low', 'close', 'volume']]
207
+
208
+ logging.info(f"Making prediction with pred_len={pred_len} on data with shape {df_model_input.shape}")
209
+
210
+ # Make prediction
211
+ # --- Timestamp Generation for Predictor ---
212
+ # The predictor requires historical and future timestamps
213
+ x_timestamp = df_model_input['timestamp']
214
+
215
+ # Assuming the K-line interval is consistent, calculate the interval
216
+ # from the last two points to generate future timestamps.
217
+ if len(x_timestamp) > 1:
218
+ interval = x_timestamp.iloc[-1] - x_timestamp.iloc[-2]
219
+ else:
220
+ # If only one data point, assume a 1-minute interval as a fallback
221
+ interval = pd.Timedelta(minutes=1)
222
+
223
+ y_timestamp = pd.date_range(
224
+ start=x_timestamp.iloc[-1] + interval,
225
+ periods=pred_len,
226
+ freq=interval
227
+ )
228
+ # Convert DatetimeIndex to Series to prevent '.dt' accessor error inside the model
229
+ y_timestamp = pd.Series(y_timestamp, name='timestamp')
230
+
231
+ # Make prediction using the predictor wrapper
232
+ pred_df = predictor.predict(
233
+ df=df_model_input,
234
+ x_timestamp=x_timestamp,
235
+ y_timestamp=y_timestamp,
236
+ pred_len=pred_len,
237
+ verbose=False # Keep logs clean
238
+ )
239
+
240
+ # Format results for JSON response
241
+ prediction_results = pred_df.to_dict(orient='records')
242
+
243
+ return jsonify({
244
+ 'success': True,
245
+ 'prediction_params': {'pred_len': pred_len},
246
+ 'prediction_results': prediction_results
247
+ })
248
+
249
+ except Exception as e:
250
+ logging.error(f"Prediction failed: {e}")
251
+ return jsonify({'error': f'An error occurred during prediction: {str(e)}'}), 500
docker-compose.yml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ version: '3.8'
2
+
3
+ services:
4
+ kronos-api:
5
+ build:
6
+ context: ..
7
+ dockerfile: ./kronos-api-service/Dockerfile
8
+ ports:
9
+ - "7860:7860"
10
+ environment:
11
+ # For local testing, you can set a fixed API key.
12
+ # For production (like Hugging Face Spaces), this should be set via secrets.
13
+ - KRONOS_API_KEY=my-secret-local-key
14
+ volumes:
15
+ # Mount the service code for live-reloading during development
16
+ - .:/app
17
+ # Mount a local directory to the container's huggingface cache directory.
18
+ # This will persist downloaded models on your host machine.
19
+ - ../.hf_cache:/root/.cache/huggingface
20
+ restart: unless-stopped
model/__init__.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .kronos import KronosTokenizer, Kronos, KronosPredictor
2
+
3
+ model_dict = {
4
+ 'kronos_tokenizer': KronosTokenizer,
5
+ 'kronos': Kronos,
6
+ 'kronos_predictor': KronosPredictor
7
+ }
8
+
9
+
10
+ def get_model_class(model_name):
11
+ if model_name in model_dict:
12
+ return model_dict[model_name]
13
+ else:
14
+ print(f"Model {model_name} not found in model_dict")
15
+ raise NotImplementedError
16
+
model/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (651 Bytes). View file
 
model/__pycache__/kronos.cpython-312.pyc ADDED
Binary file (37.6 kB). View file
 
model/__pycache__/module.cpython-312.pyc ADDED
Binary file (37.4 kB). View file
 
model/kronos.py ADDED
@@ -0,0 +1,622 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import torch
4
+ from huggingface_hub import PyTorchModelHubMixin
5
+ from tqdm import trange
6
+
7
+ from .module import *
8
+
9
+
10
+ class KronosTokenizer(nn.Module, PyTorchModelHubMixin):
11
+ """
12
+ KronosTokenizer module for tokenizing input data using a hybrid quantization approach.
13
+
14
+ This tokenizer utilizes a combination of encoder and decoder Transformer blocks
15
+ along with the Binary Spherical Quantization (BSQuantizer) to compress and decompress input data.
16
+
17
+ Args:
18
+ d_in (int): Input dimension.
19
+ d_model (int): Model dimension.
20
+ n_heads (int): Number of attention heads.
21
+ ff_dim (int): Feed-forward dimension.
22
+ n_enc_layers (int): Number of encoder layers.
23
+ n_dec_layers (int): Number of decoder layers.
24
+ ffn_dropout_p (float): Dropout probability for feed-forward networks.
25
+ attn_dropout_p (float): Dropout probability for attention mechanisms.
26
+ resid_dropout_p (float): Dropout probability for residual connections.
27
+ s1_bits (int): Number of bits for the pre token in BSQuantizer.
28
+ s2_bits (int): Number of bits for the post token in BSQuantizer.
29
+ beta (float): Beta parameter for BSQuantizer.
30
+ gamma0 (float): Gamma0 parameter for BSQuantizer.
31
+ gamma (float): Gamma parameter for BSQuantizer.
32
+ zeta (float): Zeta parameter for BSQuantizer.
33
+ group_size (int): Group size parameter for BSQuantizer.
34
+
35
+ """
36
+
37
+ def __init__(self, d_in, d_model, n_heads, ff_dim, n_enc_layers, n_dec_layers, ffn_dropout_p, attn_dropout_p, resid_dropout_p, s1_bits, s2_bits, beta, gamma0, gamma, zeta, group_size):
38
+
39
+ super().__init__()
40
+ self.d_in = d_in
41
+ self.d_model = d_model
42
+ self.n_heads = n_heads
43
+ self.ff_dim = ff_dim
44
+ self.enc_layers = n_enc_layers
45
+ self.dec_layers = n_dec_layers
46
+ self.ffn_dropout_p = ffn_dropout_p
47
+ self.attn_dropout_p = attn_dropout_p
48
+ self.resid_dropout_p = resid_dropout_p
49
+
50
+ self.s1_bits = s1_bits
51
+ self.s2_bits = s2_bits
52
+ self.codebook_dim = s1_bits + s2_bits # Total dimension of the codebook after quantization
53
+ self.embed = nn.Linear(self.d_in, self.d_model)
54
+ self.head = nn.Linear(self.d_model, self.d_in)
55
+
56
+ # Encoder Transformer Blocks
57
+ self.encoder = nn.ModuleList([
58
+ TransformerBlock(self.d_model, self.n_heads, self.ff_dim, self.ffn_dropout_p, self.attn_dropout_p, self.resid_dropout_p)
59
+ for _ in range(self.enc_layers - 1)
60
+ ])
61
+ # Decoder Transformer Blocks
62
+ self.decoder = nn.ModuleList([
63
+ TransformerBlock(self.d_model, self.n_heads, self.ff_dim, self.ffn_dropout_p, self.attn_dropout_p, self.resid_dropout_p)
64
+ for _ in range(self.dec_layers - 1)
65
+ ])
66
+ self.quant_embed = nn.Linear(in_features=self.d_model, out_features=self.codebook_dim) # Linear layer before quantization
67
+ self.post_quant_embed_pre = nn.Linear(in_features=self.s1_bits, out_features=self.d_model) # Linear layer after quantization (pre part - s1 bits)
68
+ self.post_quant_embed = nn.Linear(in_features=self.codebook_dim, out_features=self.d_model) # Linear layer after quantization (full codebook)
69
+ self.tokenizer = BSQuantizer(self.s1_bits, self.s2_bits, beta, gamma0, gamma, zeta, group_size) # BSQuantizer module
70
+
71
+ def forward(self, x):
72
+ """
73
+ Forward pass of the KronosTokenizer.
74
+
75
+ Args:
76
+ x (torch.Tensor): Input tensor of shape (batch_size, seq_len, d_in).
77
+
78
+ Returns:
79
+ tuple: A tuple containing:
80
+ - tuple: (z_pre, z) - Reconstructed outputs from decoder with s1_bits and full codebook respectively,
81
+ both of shape (batch_size, seq_len, d_in).
82
+ - torch.Tensor: bsq_loss - Loss from the BSQuantizer.
83
+ - torch.Tensor: quantized - Quantized representation from BSQuantizer.
84
+ - torch.Tensor: z_indices - Indices from the BSQuantizer.
85
+ """
86
+ z = self.embed(x)
87
+
88
+ for layer in self.encoder:
89
+ z = layer(z)
90
+
91
+ z = self.quant_embed(z) # (B, T, codebook)
92
+
93
+ bsq_loss, quantized, z_indices = self.tokenizer(z)
94
+
95
+ quantized_pre = quantized[:, :, :self.s1_bits] # Extract the first part of quantized representation (s1_bits)
96
+ z_pre = self.post_quant_embed_pre(quantized_pre)
97
+
98
+ z = self.post_quant_embed(quantized)
99
+
100
+ # Decoder layers (for pre part - s1 bits)
101
+ for layer in self.decoder:
102
+ z_pre = layer(z_pre)
103
+ z_pre = self.head(z_pre)
104
+
105
+ # Decoder layers (for full codebook)
106
+ for layer in self.decoder:
107
+ z = layer(z)
108
+ z = self.head(z)
109
+
110
+ return (z_pre, z), bsq_loss, quantized, z_indices
111
+
112
+ def indices_to_bits(self, x, half=False):
113
+ """
114
+ Converts indices to bit representations and scales them.
115
+
116
+ Args:
117
+ x (torch.Tensor): Indices tensor.
118
+ half (bool, optional): Whether to process only half of the codebook dimension. Defaults to False.
119
+
120
+ Returns:
121
+ torch.Tensor: Bit representation tensor.
122
+ """
123
+ if half:
124
+ x1 = x[0] # Assuming x is a tuple of indices if half is True
125
+ x2 = x[1]
126
+ mask = 2 ** torch.arange(self.codebook_dim//2, device=x1.device, dtype=torch.long) # Create a mask for bit extraction
127
+ x1 = (x1.unsqueeze(-1) & mask) != 0 # Extract bits for the first half
128
+ x2 = (x2.unsqueeze(-1) & mask) != 0 # Extract bits for the second half
129
+ x = torch.cat([x1, x2], dim=-1) # Concatenate the bit representations
130
+ else:
131
+ mask = 2 ** torch.arange(self.codebook_dim, device=x.device, dtype=torch.long) # Create a mask for bit extraction
132
+ x = (x.unsqueeze(-1) & mask) != 0 # Extract bits
133
+
134
+ x = x.float() * 2 - 1 # Convert boolean to bipolar (-1, 1)
135
+ q_scale = 1. / (self.codebook_dim ** 0.5) # Scaling factor
136
+ x = x * q_scale
137
+ return x
138
+
139
+ def encode(self, x, half=False):
140
+ """
141
+ Encodes the input data into quantized indices.
142
+
143
+ Args:
144
+ x (torch.Tensor): Input tensor of shape (batch_size, seq_len, d_in).
145
+ half (bool, optional): Whether to use half quantization in BSQuantizer. Defaults to False.
146
+
147
+ Returns:
148
+ torch.Tensor: Quantized indices from BSQuantizer.
149
+ """
150
+ z = self.embed(x)
151
+ for layer in self.encoder:
152
+ z = layer(z)
153
+ z = self.quant_embed(z)
154
+
155
+ bsq_loss, quantized, z_indices = self.tokenizer(z, half)
156
+ return z_indices
157
+
158
+ def decode(self, x, half=False):
159
+ """
160
+ Decodes quantized indices back to the input data space.
161
+
162
+ Args:
163
+ x (torch.Tensor): Quantized indices tensor.
164
+ half (bool, optional): Whether the indices were generated with half quantization. Defaults to False.
165
+
166
+ Returns:
167
+ torch.Tensor: Reconstructed output tensor of shape (batch_size, seq_len, d_in).
168
+ """
169
+ quantized = self.indices_to_bits(x, half)
170
+ z = self.post_quant_embed(quantized)
171
+ for layer in self.decoder:
172
+ z = layer(z)
173
+ z = self.head(z)
174
+ return z
175
+
176
+
177
+ class Kronos(nn.Module, PyTorchModelHubMixin):
178
+ """
179
+ Kronos Model.
180
+
181
+ Args:
182
+ s1_bits (int): Number of bits for pre tokens.
183
+ s2_bits (int): Number of bits for post tokens.
184
+ n_layers (int): Number of Transformer blocks.
185
+ d_model (int): Dimension of the model's embeddings and hidden states.
186
+ n_heads (int): Number of attention heads in the MultiheadAttention layers.
187
+ ff_dim (int): Dimension of the feedforward network in the Transformer blocks.
188
+ ffn_dropout_p (float): Dropout probability for the feedforward network.
189
+ attn_dropout_p (float): Dropout probability for the attention layers.
190
+ resid_dropout_p (float): Dropout probability for residual connections.
191
+ token_dropout_p (float): Dropout probability for token embeddings.
192
+ learn_te (bool): Whether to use learnable temporal embeddings.
193
+ """
194
+
195
+ def __init__(self, s1_bits, s2_bits, n_layers, d_model, n_heads, ff_dim, ffn_dropout_p, attn_dropout_p, resid_dropout_p, token_dropout_p, learn_te):
196
+ super().__init__()
197
+ self.s1_bits = s1_bits
198
+ self.s2_bits = s2_bits
199
+ self.n_layers = n_layers
200
+ self.d_model = d_model
201
+ self.n_heads = n_heads
202
+ self.learn_te = learn_te
203
+ self.ff_dim = ff_dim
204
+ self.ffn_dropout_p = ffn_dropout_p
205
+ self.attn_dropout_p = attn_dropout_p
206
+ self.resid_dropout_p = resid_dropout_p
207
+ self.token_dropout_p = token_dropout_p
208
+
209
+ self.s1_vocab_size = 2 ** self.s1_bits
210
+ self.token_drop = nn.Dropout(self.token_dropout_p)
211
+ self.embedding = HierarchicalEmbedding(self.s1_bits, self.s2_bits, self.d_model)
212
+ self.time_emb = TemporalEmbedding(self.d_model, self.learn_te)
213
+ self.transformer = nn.ModuleList([
214
+ TransformerBlock(self.d_model, self.n_heads, self.ff_dim, self.ffn_dropout_p, self.attn_dropout_p, self.resid_dropout_p)
215
+ for _ in range(self.n_layers)
216
+ ])
217
+ self.norm = RMSNorm(self.d_model)
218
+ self.dep_layer = DependencyAwareLayer(self.d_model)
219
+ self.head = DualHead(self.s1_bits, self.s2_bits, self.d_model)
220
+ self.apply(self._init_weights)
221
+
222
+ def _init_weights(self, module):
223
+
224
+ if isinstance(module, nn.Linear):
225
+ nn.init.xavier_normal_(module.weight)
226
+ if module.bias is not None:
227
+ nn.init.zeros_(module.bias)
228
+ elif isinstance(module, nn.Embedding):
229
+ nn.init.normal_(module.weight, mean=0, std=self.embedding.d_model ** -0.5)
230
+ elif isinstance(module, nn.LayerNorm):
231
+ nn.init.ones_(module.weight)
232
+ nn.init.zeros_(module.bias)
233
+ elif isinstance(module, RMSNorm):
234
+ nn.init.ones_(module.weight)
235
+
236
+ def forward(self, s1_ids, s2_ids, stamp=None, padding_mask=None, use_teacher_forcing=False, s1_targets=None):
237
+ """
238
+ Args:
239
+ s1_ids (torch.Tensor): Input tensor of s1 token IDs. Shape: [batch_size, seq_len]
240
+ s2_ids (torch.Tensor): Input tensor of s2 token IDs. Shape: [batch_size, seq_len]
241
+ stamp (torch.Tensor, optional): Temporal stamp tensor. Shape: [batch_size, seq_len]. Defaults to None.
242
+ padding_mask (torch.Tensor, optional): Mask for padding tokens. Shape: [batch_size, seq_len]. Defaults to None.
243
+ use_teacher_forcing (bool, optional): Whether to use teacher forcing for s1 decoding. Defaults to False.
244
+ s1_targets (torch.Tensor, optional): Target s1 token IDs for teacher forcing. Shape: [batch_size, seq_len]. Defaults to None.
245
+
246
+ Returns:
247
+ Tuple[torch.Tensor, torch.Tensor]:
248
+ - s1 logits: Logits for s1 token predictions. Shape: [batch_size, seq_len, s1_vocab_size]
249
+ - s2_logits: Logits for s2 token predictions, conditioned on s1. Shape: [batch_size, seq_len, s2_vocab_size]
250
+ """
251
+ x = self.embedding([s1_ids, s2_ids])
252
+ if stamp is not None:
253
+ time_embedding = self.time_emb(stamp)
254
+ x = x + time_embedding
255
+ x = self.token_drop(x)
256
+
257
+ for layer in self.transformer:
258
+ x = layer(x, key_padding_mask=padding_mask)
259
+
260
+ x = self.norm(x)
261
+
262
+ s1_logits = self.head(x)
263
+
264
+ if use_teacher_forcing:
265
+ sibling_embed = self.embedding.emb_s1(s1_targets)
266
+ else:
267
+ s1_probs = F.softmax(s1_logits.detach(), dim=-1)
268
+ sample_s1_ids = torch.multinomial(s1_probs.view(-1, self.s1_vocab_size), 1).view(s1_ids.shape)
269
+ sibling_embed = self.embedding.emb_s1(sample_s1_ids)
270
+
271
+ x2 = self.dep_layer(x, sibling_embed, key_padding_mask=padding_mask) # Dependency Aware Layer: Condition on s1 embeddings
272
+ s2_logits = self.head.cond_forward(x2)
273
+ return s1_logits, s2_logits
274
+
275
+ def decode_s1(self, s1_ids, s2_ids, stamp=None, padding_mask=None):
276
+ """
277
+ Decodes only the s1 tokens.
278
+
279
+ This method performs a forward pass to predict only s1 tokens. It returns the s1 logits
280
+ and the context representation from the Transformer, which can be used for subsequent s2 decoding.
281
+
282
+ Args:
283
+ s1_ids (torch.Tensor): Input tensor of s1 token IDs. Shape: [batch_size, seq_len]
284
+ s2_ids (torch.Tensor): Input tensor of s2 token IDs. Shape: [batch_size, seq_len]
285
+ stamp (torch.Tensor, optional): Temporal stamp tensor. Shape: [batch_size, seq_len]. Defaults to None.
286
+ padding_mask (torch.Tensor, optional): Mask for padding tokens. Shape: [batch_size, seq_len]. Defaults to None.
287
+
288
+ Returns:
289
+ Tuple[torch.Tensor, torch.Tensor]:
290
+ - s1 logits: Logits for s1 token predictions. Shape: [batch_size, seq_len, s1_vocab_size]
291
+ - context: Context representation from the Transformer. Shape: [batch_size, seq_len, d_model]
292
+ """
293
+ x = self.embedding([s1_ids, s2_ids])
294
+ if stamp is not None:
295
+ time_embedding = self.time_emb(stamp)
296
+ x = x + time_embedding
297
+ x = self.token_drop(x)
298
+
299
+ for layer in self.transformer:
300
+ x = layer(x, key_padding_mask=padding_mask)
301
+
302
+ x = self.norm(x)
303
+
304
+ s1_logits = self.head(x)
305
+ return s1_logits, x
306
+
307
+ def decode_s2(self, context, s1_ids, padding_mask=None):
308
+ """
309
+ Decodes the s2 tokens, conditioned on the context and s1 tokens.
310
+
311
+ This method decodes s2 tokens based on a pre-computed context representation (typically from `decode_s1`)
312
+ and the s1 token IDs. It uses the dependency-aware layer and the conditional s2 head to predict s2 tokens.
313
+
314
+ Args:
315
+ context (torch.Tensor): Context representation from the transformer (output of decode_s1).
316
+ Shape: [batch_size, seq_len, d_model]
317
+ s1_ids (torch.torch.Tensor): Input tensor of s1 token IDs. Shape: [batch_size, seq_len]
318
+ padding_mask (torch.Tensor, optional): Mask for padding tokens. Shape: [batch_size, seq_len]. Defaults to None.
319
+
320
+ Returns:
321
+ torch.Tensor: s2 logits. Shape: [batch_size, seq_len, s2_vocab_size]
322
+ """
323
+ sibling_embed = self.embedding.emb_s1(s1_ids)
324
+ x2 = self.dep_layer(context, sibling_embed, key_padding_mask=padding_mask)
325
+ return self.head.cond_forward(x2)
326
+
327
+
328
+ def top_k_top_p_filtering(
329
+ logits,
330
+ top_k: int = 0,
331
+ top_p: float = 1.0,
332
+ filter_value: float = -float("Inf"),
333
+ min_tokens_to_keep: int = 1,
334
+ ):
335
+ """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
336
+ Args:
337
+ logits: logits distribution shape (batch size, vocabulary size)
338
+ if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
339
+ if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
340
+ Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
341
+ Make sure we keep at least min_tokens_to_keep per batch example in the output
342
+ From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
343
+ """
344
+ if top_k > 0:
345
+ top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
346
+ # Remove all tokens with a probability less than the last token of the top-k
347
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
348
+ logits[indices_to_remove] = filter_value
349
+ return logits
350
+
351
+ if top_p < 1.0:
352
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
353
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
354
+
355
+ # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
356
+ sorted_indices_to_remove = cumulative_probs > top_p
357
+ if min_tokens_to_keep > 1:
358
+ # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
359
+ sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
360
+ # Shift the indices to the right to keep also the first token above the threshold
361
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
362
+ sorted_indices_to_remove[..., 0] = 0
363
+
364
+ # scatter sorted tensors to original indexing
365
+ indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
366
+ logits[indices_to_remove] = filter_value
367
+ return logits
368
+
369
+
370
+ def sample_from_logits(logits, temperature=1.0, top_k=None, top_p=None, sample_logits=True):
371
+ logits = logits / temperature
372
+ if top_k is not None or top_p is not None:
373
+ if top_k > 0 or top_p < 1.0:
374
+ logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
375
+
376
+ probs = F.softmax(logits, dim=-1)
377
+
378
+ if not sample_logits:
379
+ _, x = top_k(probs, k=1, dim=-1)
380
+ else:
381
+ x = torch.multinomial(probs, num_samples=1)
382
+
383
+ return x
384
+
385
+
386
+ def auto_regressive_inference(tokenizer, model, x, x_stamp, y_stamp, max_context, pred_len, clip=5, T=1.0, top_k=0, top_p=0.99, sample_count=5, verbose=False):
387
+ with torch.no_grad():
388
+ batch_size = x.size(0)
389
+ initial_seq_len = x.size(1)
390
+ x = torch.clip(x, -clip, clip)
391
+
392
+ device = x.device
393
+ x = x.unsqueeze(1).repeat(1, sample_count, 1, 1).reshape(-1, x.size(1), x.size(2)).to(device)
394
+ x_stamp = x_stamp.unsqueeze(1).repeat(1, sample_count, 1, 1).reshape(-1, x_stamp.size(1), x_stamp.size(2)).to(device)
395
+ y_stamp = y_stamp.unsqueeze(1).repeat(1, sample_count, 1, 1).reshape(-1, y_stamp.size(1), y_stamp.size(2)).to(device)
396
+
397
+ x_token = tokenizer.encode(x, half=True)
398
+
399
+ def get_dynamic_stamp(x_stamp, y_stamp, current_seq_len, pred_step):
400
+
401
+ if current_seq_len <= max_context - pred_step:
402
+ return torch.cat([x_stamp, y_stamp[:, :pred_step, :]], dim=1)
403
+ else:
404
+ start_idx = max_context - pred_step
405
+ return torch.cat([x_stamp[:, -start_idx:, :], y_stamp[:, :pred_step, :]], dim=1)
406
+
407
+ if verbose:
408
+ ran = trange
409
+ else:
410
+ ran = range
411
+ for i in ran(pred_len):
412
+ current_seq_len = initial_seq_len + i
413
+
414
+ if current_seq_len <= max_context:
415
+ input_tokens = x_token
416
+ else:
417
+ input_tokens = [t[:, -max_context:].contiguous() for t in x_token]
418
+
419
+ current_stamp = get_dynamic_stamp(x_stamp, y_stamp, current_seq_len, i)
420
+
421
+ s1_logits, context = model.decode_s1(input_tokens[0], input_tokens[1], current_stamp)
422
+ s1_logits = s1_logits[:, -1, :]
423
+ sample_pre = sample_from_logits(s1_logits, temperature=T, top_k=top_k, top_p=top_p, sample_logits=True)
424
+
425
+ s2_logits = model.decode_s2(context, sample_pre)
426
+ s2_logits = s2_logits[:, -1, :]
427
+ sample_post = sample_from_logits(s2_logits, temperature=T, top_k=top_k, top_p=top_p, sample_logits=True)
428
+
429
+ x_token[0] = torch.cat([x_token[0], sample_pre], dim=1)
430
+ x_token[1] = torch.cat([x_token[1], sample_post], dim=1)
431
+
432
+ torch.cuda.empty_cache()
433
+
434
+ input_tokens = [t[:, -max_context:].contiguous() for t in x_token]
435
+ z = tokenizer.decode(input_tokens, half=True)
436
+ z = z.reshape(batch_size, sample_count, z.size(1), z.size(2))
437
+ preds = z.cpu().numpy()
438
+ preds = np.mean(preds, axis=1)
439
+
440
+ return preds
441
+
442
+
443
+ def calc_time_stamps(x_timestamp):
444
+ time_df = pd.DataFrame()
445
+ time_df['minute'] = x_timestamp.dt.minute
446
+ time_df['hour'] = x_timestamp.dt.hour
447
+ time_df['weekday'] = x_timestamp.dt.weekday
448
+ time_df['day'] = x_timestamp.dt.day
449
+ time_df['month'] = x_timestamp.dt.month
450
+ return time_df
451
+
452
+
453
+ class KronosPredictor:
454
+
455
+ def __init__(self, model, tokenizer, device="cuda:0", max_context=512, clip=5):
456
+ self.tokenizer = tokenizer
457
+ self.model = model
458
+ self.max_context = max_context
459
+ self.clip = clip
460
+ self.price_cols = ['open', 'high', 'low', 'close']
461
+ self.vol_col = 'volume'
462
+ self.amt_vol = 'amount'
463
+ self.time_cols = ['minute', 'hour', 'weekday', 'day', 'month']
464
+ self.device = device
465
+
466
+ self.tokenizer = self.tokenizer.to(self.device)
467
+ self.model = self.model.to(self.device)
468
+
469
+ def generate(self, x, x_stamp, y_stamp, pred_len, T, top_k, top_p, sample_count, verbose):
470
+
471
+ x_tensor = torch.from_numpy(np.array(x).astype(np.float32)).to(self.device)
472
+ x_stamp_tensor = torch.from_numpy(np.array(x_stamp).astype(np.float32)).to(self.device)
473
+ y_stamp_tensor = torch.from_numpy(np.array(y_stamp).astype(np.float32)).to(self.device)
474
+
475
+ preds = auto_regressive_inference(self.tokenizer, self.model, x_tensor, x_stamp_tensor, y_stamp_tensor, self.max_context, pred_len,
476
+ self.clip, T, top_k, top_p, sample_count, verbose)
477
+ preds = preds[:, -pred_len:, :]
478
+ return preds
479
+
480
+ def predict(self, df, x_timestamp, y_timestamp, pred_len, T=1.0, top_k=0, top_p=0.9, sample_count=1, verbose=True):
481
+
482
+ if not isinstance(df, pd.DataFrame):
483
+ raise ValueError("Input must be a pandas DataFrame.")
484
+
485
+ if not all(col in df.columns for col in self.price_cols):
486
+ raise ValueError(f"Price columns {self.price_cols} not found in DataFrame.")
487
+
488
+ df = df.copy()
489
+ if self.vol_col not in df.columns:
490
+ df[self.vol_col] = 0.0 # Fill missing volume with zeros
491
+ df[self.amt_vol] = 0.0 # Fill missing amount with zeros
492
+ if self.amt_vol not in df.columns and self.vol_col in df.columns:
493
+ df[self.amt_vol] = df[self.vol_col] * df[self.price_cols].mean(axis=1)
494
+
495
+ if df[self.price_cols + [self.vol_col, self.amt_vol]].isnull().values.any():
496
+ raise ValueError("Input DataFrame contains NaN values in price or volume columns.")
497
+
498
+ x_time_df = calc_time_stamps(x_timestamp)
499
+ y_time_df = calc_time_stamps(y_timestamp)
500
+
501
+ x = df[self.price_cols + [self.vol_col, self.amt_vol]].values.astype(np.float32)
502
+ x_stamp = x_time_df.values.astype(np.float32)
503
+ y_stamp = y_time_df.values.astype(np.float32)
504
+
505
+ x_mean, x_std = np.mean(x, axis=0), np.std(x, axis=0)
506
+
507
+ x = (x - x_mean) / (x_std + 1e-5)
508
+ x = np.clip(x, -self.clip, self.clip)
509
+
510
+ x = x[np.newaxis, :]
511
+ x_stamp = x_stamp[np.newaxis, :]
512
+ y_stamp = y_stamp[np.newaxis, :]
513
+
514
+ preds = self.generate(x, x_stamp, y_stamp, pred_len, T, top_k, top_p, sample_count, verbose)
515
+
516
+ preds = preds.squeeze(0)
517
+ preds = preds * (x_std + 1e-5) + x_mean
518
+
519
+ pred_df = pd.DataFrame(preds, columns=self.price_cols + [self.vol_col, self.amt_vol], index=y_timestamp)
520
+ return pred_df
521
+
522
+
523
+ def predict_batch(self, df_list, x_timestamp_list, y_timestamp_list, pred_len, T=1.0, top_k=0, top_p=0.9, sample_count=1, verbose=True):
524
+ """
525
+ Perform parallel (batch) prediction on multiple time series. All series must have the same historical length and prediction length (pred_len).
526
+
527
+ Args:
528
+ df_list (List[pd.DataFrame]): List of input DataFrames, each containing price columns and optional volume/amount columns.
529
+ x_timestamp_list (List[pd.DatetimeIndex or Series]): List of timestamps corresponding to historical data, length should match the number of rows in each DataFrame.
530
+ y_timestamp_list (List[pd.DatetimeIndex or Series]): List of future prediction timestamps, length should equal pred_len.
531
+ pred_len (int): Number of prediction steps.
532
+ T (float): Sampling temperature.
533
+ top_k (int): Top-k filtering threshold.
534
+ top_p (float): Top-p (nucleus sampling) threshold.
535
+ sample_count (int): Number of parallel samples per series, automatically averaged internally.
536
+ verbose (bool): Whether to display autoregressive progress.
537
+
538
+ Returns:
539
+ List[pd.DataFrame]: List of prediction results in the same order as input, each DataFrame contains
540
+ `open, high, low, close, volume, amount` columns, indexed by corresponding `y_timestamp`.
541
+ """
542
+ # Basic validation
543
+ if not isinstance(df_list, (list, tuple)) or not isinstance(x_timestamp_list, (list, tuple)) or not isinstance(y_timestamp_list, (list, tuple)):
544
+ raise ValueError("df_list, x_timestamp_list, y_timestamp_list must be list or tuple types.")
545
+ if not (len(df_list) == len(x_timestamp_list) == len(y_timestamp_list)):
546
+ raise ValueError("df_list, x_timestamp_list, y_timestamp_list must have consistent lengths.")
547
+
548
+ num_series = len(df_list)
549
+
550
+ x_list = []
551
+ x_stamp_list = []
552
+ y_stamp_list = []
553
+ means = []
554
+ stds = []
555
+ seq_lens = []
556
+ y_lens = []
557
+
558
+ for i in range(num_series):
559
+ df = df_list[i]
560
+ if not isinstance(df, pd.DataFrame):
561
+ raise ValueError(f"Input at index {i} is not a pandas DataFrame.")
562
+ if not all(col in df.columns for col in self.price_cols):
563
+ raise ValueError(f"DataFrame at index {i} is missing price columns {self.price_cols}.")
564
+
565
+ df = df.copy()
566
+ if self.vol_col not in df.columns:
567
+ df[self.vol_col] = 0.0
568
+ df[self.amt_vol] = 0.0
569
+ if self.amt_vol not in df.columns and self.vol_col in df.columns:
570
+ df[self.amt_vol] = df[self.vol_col] * df[self.price_cols].mean(axis=1)
571
+
572
+ if df[self.price_cols + [self.vol_col, self.amt_vol]].isnull().values.any():
573
+ raise ValueError(f"DataFrame at index {i} contains NaN values in price or volume columns.")
574
+
575
+ x_timestamp = x_timestamp_list[i]
576
+ y_timestamp = y_timestamp_list[i]
577
+
578
+ x_time_df = calc_time_stamps(x_timestamp)
579
+ y_time_df = calc_time_stamps(y_timestamp)
580
+
581
+ x = df[self.price_cols + [self.vol_col, self.amt_vol]].values.astype(np.float32)
582
+ x_stamp = x_time_df.values.astype(np.float32)
583
+ y_stamp = y_time_df.values.astype(np.float32)
584
+
585
+ if x.shape[0] != x_stamp.shape[0]:
586
+ raise ValueError(f"Inconsistent lengths at index {i}: x has {x.shape[0]} vs x_stamp has {x_stamp.shape[0]}.")
587
+ if y_stamp.shape[0] != pred_len:
588
+ raise ValueError(f"y_timestamp length at index {i} should equal pred_len={pred_len}, got {y_stamp.shape[0]}.")
589
+
590
+ x_mean, x_std = np.mean(x, axis=0), np.std(x, axis=0)
591
+ x_norm = (x - x_mean) / (x_std + 1e-5)
592
+ x_norm = np.clip(x_norm, -self.clip, self.clip)
593
+
594
+ x_list.append(x_norm)
595
+ x_stamp_list.append(x_stamp)
596
+ y_stamp_list.append(y_stamp)
597
+ means.append(x_mean)
598
+ stds.append(x_std)
599
+
600
+ seq_lens.append(x_norm.shape[0])
601
+ y_lens.append(y_stamp.shape[0])
602
+
603
+ # Require all series to have consistent historical and prediction lengths for batch processing
604
+ if len(set(seq_lens)) != 1:
605
+ raise ValueError(f"Parallel prediction requires all series to have consistent historical lengths, got: {seq_lens}")
606
+ if len(set(y_lens)) != 1:
607
+ raise ValueError(f"Parallel prediction requires all series to have consistent prediction lengths, got: {y_lens}")
608
+
609
+ x_batch = np.stack(x_list, axis=0).astype(np.float32) # (B, seq_len, feat)
610
+ x_stamp_batch = np.stack(x_stamp_list, axis=0).astype(np.float32) # (B, seq_len, time_feat)
611
+ y_stamp_batch = np.stack(y_stamp_list, axis=0).astype(np.float32) # (B, pred_len, time_feat)
612
+
613
+ preds = self.generate(x_batch, x_stamp_batch, y_stamp_batch, pred_len, T, top_k, top_p, sample_count, verbose)
614
+ # preds: (B, pred_len, feat)
615
+
616
+ pred_dfs = []
617
+ for i in range(num_series):
618
+ preds_i = preds[i] * (stds[i] + 1e-5) + means[i]
619
+ pred_df = pd.DataFrame(preds_i, columns=self.price_cols + [self.vol_col, self.amt_vol], index=y_timestamp_list[i])
620
+ pred_dfs.append(pred_df)
621
+
622
+ return pred_dfs
model/module.py ADDED
@@ -0,0 +1,574 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ from einops import rearrange, reduce
4
+ import torch
5
+ import torch.nn as nn
6
+ from torch.autograd import Function
7
+ import torch.nn.functional as F
8
+
9
+
10
+ class DifferentiableEntropyFunction(Function):
11
+ @staticmethod
12
+ def forward(ctx, zq, basis, K, eps):
13
+ zb = (zq + 1) / 2
14
+ zi = ((zb * basis).sum(-1)).to(torch.int64)
15
+ cnt = torch.scatter_reduce(torch.zeros(2 ** K, device=zq.device, dtype=zq.dtype),
16
+ 0,
17
+ zi.flatten(),
18
+ torch.ones_like(zi.flatten()).to(zq.dtype),
19
+ 'sum')
20
+ prob = (cnt + eps) / (cnt + eps).sum()
21
+ H = -(prob * torch.log(prob)).sum()
22
+ ctx.save_for_backward(zq, zi, prob)
23
+ ctx.K = K
24
+ return H
25
+
26
+ @staticmethod
27
+ def backward(ctx, grad_output):
28
+ zq, zi, prob = ctx.saved_tensors
29
+ grad_array = -grad_output * (torch.log(prob) + 1) / zi.numel() / ctx.K
30
+ reord_grad = grad_array[zi.flatten()].reshape(zi.shape)
31
+ grad_input = reord_grad.unsqueeze(-1) * zq
32
+ return grad_input, None, None, None, None
33
+
34
+
35
+ def codebook_entropy(zq, basis, K, eps=1e-4):
36
+ return DifferentiableEntropyFunction.apply(zq, basis, K, eps)
37
+
38
+
39
+ class BinarySphericalQuantizer(nn.Module):
40
+ def __init__(self, embed_dim, beta, gamma0, gamma, zeta,
41
+ input_format='bchw',
42
+ soft_entropy=True, group_size=9,
43
+ persample_entropy_compute='analytical',
44
+ cb_entropy_compute='group',
45
+ l2_norm=True,
46
+ inv_temperature=1):
47
+ """
48
+ Paper link: https://arxiv.org/pdf/2406.07548.pdf
49
+ Here we use the official implementation of the BinarySphericalQuantizer.
50
+ """
51
+ super().__init__()
52
+ self.embed_dim = embed_dim
53
+ self.beta = beta # loss weight for commit loss
54
+ self.gamma0 = gamma0 # loss weight for entropy penalty
55
+ self.gamma = gamma # loss weight for entropy penalty
56
+ self.zeta = zeta # loss weight for entire entropy penalty
57
+ self.input_format = input_format
58
+ assert self.embed_dim % group_size == 0, "embed_dim must be divisible by group_size"
59
+ self.num_groups = self.embed_dim // group_size
60
+ self.group_size = group_size
61
+ assert persample_entropy_compute in ['group', 'analytical'], "persample_entropy_compute must be either 'group' or 'analytical'"
62
+ assert cb_entropy_compute in ['group', 'nce'], "cb_entropy_compute must be either 'group' or 'nce'"
63
+ self.persample_entropy_compute = persample_entropy_compute
64
+ self.cb_entropy_compute = cb_entropy_compute
65
+ self.l2_norm = l2_norm
66
+ self.inv_temperature = inv_temperature
67
+
68
+ self.register_buffer('basis', 2 ** torch.arange(embed_dim - 1, -1, -1))
69
+ self.register_buffer('group_basis', 2 ** torch.arange(group_size - 1, -1, -1))
70
+
71
+ self.num_dimensions = 2 ** embed_dim
72
+ self.bits_per_index = embed_dim
73
+
74
+ # we only need to keep the codebook portion up to the group size
75
+ # because we approximate the H loss with this subcode
76
+ group_codes = torch.arange(2 ** self.group_size)
77
+ group_codebook = self.indexes_to_codes(group_codes).float()[:, -group_size:]
78
+ self.register_buffer('group_codebook', group_codebook, persistent=False)
79
+
80
+ self.soft_entropy = soft_entropy # soft_entropy: Sec 3.2 of https://arxiv.org/pdf/1911.05894.pdf
81
+
82
+ def quantize(self, z):
83
+ assert z.shape[-1] == self.embed_dim, f"Expected {self.embed_dim} dimensions, got {z.shape[-1]}"
84
+
85
+ zhat = torch.where(z > 0,
86
+ torch.tensor(1, dtype=z.dtype, device=z.device),
87
+ torch.tensor(-1, dtype=z.dtype, device=z.device))
88
+ return z + (zhat - z).detach()
89
+
90
+ def forward(self, z):
91
+ # if self.input_format == 'bchw':
92
+ # z = rearrange(z, 'b c h w -> b h w c')
93
+ zq = self.quantize(z)
94
+
95
+ indices = self.codes_to_indexes(zq.detach())
96
+ group_indices = self.codes_to_group_indexes(zq.detach())
97
+ if not self.training:
98
+ used_codes = torch.unique(indices, return_counts=False)
99
+ else:
100
+ used_codes = None
101
+
102
+ q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.
103
+
104
+ if self.soft_entropy:
105
+ persample_entropy, cb_entropy, avg_prob = self.soft_entropy_loss(z)
106
+ entropy_penalty = self.gamma0 * persample_entropy - self.gamma * cb_entropy
107
+ else:
108
+ zb_by_sample = ((zq + 1) / 2).reshape(z.shape[0], -1, z.shape[-1]).to(torch.float32)
109
+ persample_entropy = self.get_hard_per_sample_entropy(zb_by_sample)
110
+ cb_entropy = codebook_entropy(zq, self.basis, self.embed_dim)
111
+ entropy_penalty = self.gamma0 * persample_entropy - self.gamma * cb_entropy
112
+
113
+ zq = zq * q_scale
114
+
115
+ # commit loss
116
+ commit_loss = self.beta * torch.mean(((zq.detach() - z) ** 2).sum(dim=-1))
117
+
118
+ # if self.input_format == 'bchw':
119
+ # zq = rearrange(zq, 'b h w c -> b c h w')
120
+
121
+ return (
122
+ zq,
123
+ commit_loss + self.zeta * entropy_penalty / self.inv_temperature,
124
+ {"H": cb_entropy, "used_codes": used_codes, "indices": indices, "group_indices": group_indices,
125
+ "avg_prob": avg_prob}
126
+ )
127
+
128
+ def soft_entropy_loss(self, z):
129
+ # if we divide the code in subgroups of size group_size, the codebook will be of size 2 ** group_size
130
+ # the sub-code is the last group_size bits of the full code
131
+ group_code_book = self.group_codebook / (self.embed_dim ** 0.5 if self.l2_norm else 1)
132
+ divided_z = rearrange(z, '... (g c) -> ... g c', c=self.group_size)
133
+
134
+ # we calculate the distance between the divided_z and the codebook for each subgroup
135
+ distance = - 2 * torch.einsum('... g c, d c ->... g d', divided_z, group_code_book)
136
+ prob = (-distance * self.inv_temperature).softmax(dim=-1)
137
+ if self.persample_entropy_compute == 'analytical':
138
+ if self.l2_norm:
139
+ p = torch.sigmoid(-4 * z / (self.embed_dim ** 0.5) * self.inv_temperature)
140
+ else:
141
+ p = torch.sigmoid(-4 * z * self.inv_temperature)
142
+ prob = torch.stack([p, 1 - p], dim=-1)
143
+ per_sample_entropy = self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()
144
+ else:
145
+ per_sample_entropy = self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()
146
+
147
+ # macro average of the probability of each subgroup
148
+ avg_prob = reduce(prob, '... g d ->g d', 'mean')
149
+ codebook_entropy = self.get_entropy(avg_prob, dim=-1, normalize=False)
150
+
151
+ # the approximation of the entropy is the sum of the entropy of each subgroup
152
+ return per_sample_entropy, codebook_entropy.sum(), avg_prob
153
+
154
+ def get_hard_per_sample_entropy(self, zb_by_sample):
155
+ probs_per_dim = zb_by_sample.sum(1) / zb_by_sample.shape[1]
156
+ persample_entropy = - probs_per_dim * torch.log(probs_per_dim + 1e-8) - (1 - probs_per_dim) * torch.log(1 - probs_per_dim + 1e-8)
157
+ persample_entropy = persample_entropy.sum(-1)
158
+ return persample_entropy.mean()
159
+
160
+ def codes_to_indexes(self, zhat):
161
+ """Converts a `code` to an index in the codebook.
162
+ Args:
163
+ zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1}
164
+ """
165
+ assert zhat.shape[-1] == self.embed_dim, f"Expected {self.embed_dim} dimensions, got {zhat.shape[-1]}"
166
+ return ((zhat + 1) / 2 * self.basis).sum(axis=-1).to(torch.int64)
167
+
168
+ def codes_to_group_indexes(self, zhat):
169
+ """Converts a `code` to a list of indexes (in groups) in the codebook.
170
+ Args:
171
+ zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1}
172
+ """
173
+ zhat_in_group = rearrange(zhat, 'b ... (g c) -> b ... g c', c=self.group_size)
174
+ return ((zhat_in_group + 1) / 2 * self.group_basis).sum(axis=-1).to(torch.int64)
175
+
176
+ def indexes_to_codes(self, indices):
177
+ """Inverse of `indexes_to_codes`."""
178
+ indices = indices.unsqueeze(-1)
179
+ codes_non_centered = torch.remainder(
180
+ torch.floor_divide(indices, self.basis), 2
181
+ )
182
+ return codes_non_centered * 2 - 1
183
+
184
+ def group_indexes_to_codes(self, group_indices):
185
+ """Inverse of `group_indexes_to_codes`."""
186
+ group_indices = group_indices.unsqueeze(-1)
187
+ codes_non_centered = torch.remainder(
188
+ torch.floor_divide(group_indices, self.group_basis), 2
189
+ )
190
+ codes_non_centered = rearrange(codes_non_centered, 'b ... g c -> b ... (g c)')
191
+ return codes_non_centered * 2 - 1
192
+
193
+ def get_entropy(self, count, dim=-1, eps=1e-4, normalize=True):
194
+ if normalize:
195
+ probs = (count + eps) / (count + eps).sum(dim=dim, keepdim=True)
196
+ else:
197
+ probs = count
198
+ H = -(probs * torch.log(probs + 1e-8)).sum(dim=dim)
199
+ return H
200
+
201
+ def get_group_codebook_entry(self, group_indices):
202
+ z_q = self.group_indexes_to_codes(group_indices)
203
+ q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.
204
+ z_q = z_q * q_scale
205
+ if self.input_format == 'bchw':
206
+ h, w = int(z_q.shape[1] ** 0.5)
207
+ assert h * w == z_q.shape[1], 'Invalid sequence length'
208
+ z_q = rearrange(z_q, 'b (h w) c -> b c h w', h=h)
209
+ return z_q
210
+
211
+ def get_codebook_entry(self, indices):
212
+ z_q = self.indexes_to_codes(indices)
213
+ q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.
214
+ z_q = z_q * q_scale
215
+ if self.input_format == 'bchw':
216
+ h, w = int(z_q.shape[1] ** 0.5)
217
+ assert h * w == z_q.shape[1], 'Invalid sequence length'
218
+ z_q = rearrange(z_q, 'b (h w) c -> b c h w', h=h)
219
+ return z_q
220
+
221
+
222
+ class BSQuantizer(nn.Module):
223
+
224
+ def __init__(self, s1_bits, s2_bits, beta, gamma0, gamma, zeta, group_size):
225
+ super().__init__()
226
+ self.codebook_dim = s1_bits + s2_bits
227
+ self.s1_bits = s1_bits
228
+ self.s2_bits = s2_bits
229
+ self.bsq = BinarySphericalQuantizer(self.codebook_dim, beta, gamma0, gamma, zeta, group_size=group_size)
230
+
231
+ def bits_to_indices(self, bits):
232
+ bits = (bits >= 0).to(torch.long)
233
+ indices = 2 ** torch.arange(
234
+ 0,
235
+ bits.shape[-1],
236
+ 1,
237
+ dtype=torch.long,
238
+ device=bits.device,
239
+ )
240
+ return (bits * indices).sum(-1)
241
+
242
+ def forward(self, z, half=False):
243
+ z = F.normalize(z, dim=-1)
244
+ quantized, bsq_loss, metrics = self.bsq(z)
245
+ if half:
246
+ q_pre = quantized[:, :, :self.s1_bits]
247
+ q_post = quantized[:, :, self.s1_bits:]
248
+ z_indices = [self.bits_to_indices(q_pre), self.bits_to_indices(q_post)]
249
+ else:
250
+ z_indices = self.bits_to_indices(quantized)
251
+ return bsq_loss, quantized, z_indices
252
+
253
+
254
+ class RMSNorm(torch.nn.Module):
255
+ def __init__(self, dim: int, eps: float = 1e-5):
256
+ super().__init__()
257
+ self.eps = eps
258
+ self.weight = nn.Parameter(torch.ones(dim))
259
+
260
+ def _norm(self, x):
261
+ return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
262
+
263
+ def forward(self, x):
264
+ output = self._norm(x.float()).type_as(x)
265
+ return output * self.weight
266
+
267
+
268
+ class FeedForward(nn.Module):
269
+ def __init__(self, d_model, ff_dim, ffn_dropout_p=0.0):
270
+ super().__init__()
271
+
272
+ self.w1 = nn.Linear(d_model, ff_dim, bias=False)
273
+ self.w3 = nn.Linear(d_model, ff_dim, bias=False)
274
+ self.w2 = nn.Linear(ff_dim, d_model, bias=False)
275
+ self.ffn_dropout = nn.Dropout(ffn_dropout_p)
276
+
277
+ def forward(self, x):
278
+ return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
279
+
280
+
281
+ class RotaryPositionalEmbedding(nn.Module):
282
+ def __init__(self, dim):
283
+ super().__init__()
284
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
285
+ self.register_buffer("inv_freq", inv_freq)
286
+ self.seq_len_cached = None
287
+ self.cos_cached = None
288
+ self.sin_cached = None
289
+
290
+ def _update_cos_sin_cache(self, x, seq_len):
291
+ if seq_len != self.seq_len_cached:
292
+ self.seq_len_cached = seq_len
293
+ t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
294
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
295
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
296
+ self.cos_cached = emb.cos()[None, None, :, :]
297
+ self.sin_cached = emb.sin()[None, None, :, :]
298
+ return self.cos_cached, self.sin_cached
299
+
300
+ def forward(self, q, k):
301
+ cos, sin = self._update_cos_sin_cache(q, q.shape[-2])
302
+ return (
303
+ (q * cos) + (self._rotate_half(q) * sin),
304
+ (k * cos) + (self._rotate_half(k) * sin),
305
+ )
306
+
307
+ def _rotate_half(self, x):
308
+ x1, x2 = x.chunk(2, dim=-1)
309
+ return torch.cat((-x2, x1), dim=-1)
310
+
311
+
312
+ def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
313
+ L, S = query.size(-2), key.size(-2)
314
+ scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
315
+ attn_bias = torch.zeros(L, S, dtype=query.dtype).to(query.device)
316
+
317
+ if is_causal:
318
+ assert attn_mask is None
319
+ temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0).to(query.device)
320
+ attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
321
+ attn_bias.to(query.dtype)
322
+
323
+ attn_weight = query @ key.transpose(-2, -1) * scale_factor
324
+ attn_weight += attn_bias
325
+
326
+ if attn_mask is not None:
327
+ attn_mask_bias = torch.zeros_like(attn_weight)
328
+ if attn_mask.dtype == torch.bool:
329
+ attn_mask_bias.masked_fill_(attn_mask, float("-inf"))
330
+ else:
331
+ attn_mask_bias += attn_mask
332
+ attn_weight += attn_mask_bias
333
+
334
+ attn_weight = torch.softmax(attn_weight, dim=-1)
335
+ attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
336
+ return attn_weight @ value
337
+
338
+
339
+ class MultiHeadAttentionWithRoPE(nn.Module):
340
+ def __init__(self, d_model, n_heads, attn_dropout_p=0.0, resid_dropout_p=0.0):
341
+ super().__init__()
342
+ self.d_model = d_model
343
+ self.n_heads = n_heads
344
+ self.head_dim = d_model // n_heads
345
+
346
+ self.q_proj = nn.Linear(d_model, d_model)
347
+ self.k_proj = nn.Linear(d_model, d_model)
348
+ self.v_proj = nn.Linear(d_model, d_model)
349
+ self.out_proj = nn.Linear(d_model, d_model)
350
+ self.rotary = RotaryPositionalEmbedding(self.head_dim)
351
+ self.attn_dropout_p = attn_dropout_p
352
+ self.resid_dropout = nn.Dropout(resid_dropout_p)
353
+
354
+ def forward(self, x, key_padding_mask=None):
355
+ batch_size, seq_len, _ = x.shape
356
+
357
+ q = self.q_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
358
+ k = self.k_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
359
+ v = self.v_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
360
+
361
+ q, k = self.rotary(q, k)
362
+
363
+ if key_padding_mask is not None:
364
+ attn_mask = key_padding_mask.unsqueeze(1).unsqueeze(2) # [batch, 1, 1, seq_len]
365
+ attn_mask = attn_mask.expand(-1, self.n_heads, seq_len, -1) # [batch, n_heads, q_len, k_len]
366
+ else:
367
+ attn_mask = None
368
+
369
+ attn_output = scaled_dot_product_attention(
370
+ q, k, v,
371
+ attn_mask=attn_mask,
372
+ dropout_p=self.attn_dropout_p,
373
+ is_causal=True
374
+ )
375
+
376
+ attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.d_model)
377
+ return self.resid_dropout(self.out_proj(attn_output))
378
+
379
+
380
+ class MultiHeadCrossAttentionWithRoPE(nn.Module):
381
+ def __init__(self, d_model, n_heads, attn_dropout_p=0.0, resid_dropout=0.0):
382
+ super().__init__()
383
+ self.d_model = d_model
384
+ self.n_heads = n_heads
385
+ self.head_dim = d_model // n_heads
386
+
387
+ self.q_proj = nn.Linear(d_model, d_model)
388
+ self.k_proj = nn.Linear(d_model, d_model)
389
+ self.v_proj = nn.Linear(d_model, d_model)
390
+ self.out_proj = nn.Linear(d_model, d_model)
391
+ self.rotary = RotaryPositionalEmbedding(self.head_dim)
392
+ self.attn_dropout_p = attn_dropout_p
393
+ self.resid_dropout = nn.Dropout(resid_dropout)
394
+
395
+ def forward(self, query, key, value, key_padding_mask=None):
396
+ batch_size, q_len, _ = query.shape
397
+ _, seq_len, _ = key.shape
398
+
399
+ q = self.q_proj(query).view(batch_size, q_len, self.n_heads, self.head_dim).transpose(1, 2)
400
+ k = self.k_proj(key).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
401
+ v = self.v_proj(value).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
402
+
403
+ q, k = self.rotary(q, k)
404
+
405
+ if key_padding_mask is not None:
406
+ attn_mask = key_padding_mask.unsqueeze(1).unsqueeze(2)
407
+ attn_mask = attn_mask.expand(-1, self.n_heads, q_len, -1)
408
+ else:
409
+ attn_mask = None
410
+
411
+ is_causal_flag = self.training
412
+
413
+ attn_output = scaled_dot_product_attention(
414
+ q, k, v,
415
+ attn_mask=attn_mask,
416
+ dropout_p=self.attn_dropout_p,
417
+ is_causal=is_causal_flag
418
+ )
419
+
420
+ attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, q_len, self.d_model)
421
+ return self.resid_dropout(self.out_proj(attn_output))
422
+
423
+
424
+ class HierarchicalEmbedding(nn.Module):
425
+ def __init__(self, s1_bits, s2_bits, d_model=256):
426
+ super().__init__()
427
+ self.s1_bits = s1_bits
428
+ self.s2_bits = s2_bits
429
+
430
+ vocab_s1 = 2 ** s1_bits
431
+ vocab_s2 = 2 ** s2_bits
432
+
433
+ self.emb_s1 = nn.Embedding(vocab_s1, d_model)
434
+ self.emb_s2 = nn.Embedding(vocab_s2, d_model)
435
+ self.d_model = d_model
436
+ self.fusion_proj = nn.Linear(d_model * 2, d_model)
437
+
438
+ nn.init.normal_(self.emb_s1.weight, mean=0, std=d_model ** -0.5)
439
+ nn.init.normal_(self.emb_s2.weight, mean=0, std=d_model ** -0.5)
440
+
441
+ def forward(self, token_ids):
442
+ """Inputs:
443
+ token_ids: [batch_size, seq_len] token ID
444
+ Output: [batch_size, seq_len, d_model]
445
+ """
446
+ if isinstance(token_ids, tuple) or isinstance(token_ids, list):
447
+ s1_ids, s2_ids = token_ids
448
+ else:
449
+ s1_ids, s2_ids = self.split_token(token_ids, self.s2_bits)
450
+ s1_emb = self.emb_s1(s1_ids) * math.sqrt(self.d_model)
451
+ s2_emb = self.emb_s2(s2_ids) * math.sqrt(self.d_model)
452
+ return self.fusion_proj(torch.cat([s1_emb, s2_emb], dim=-1))
453
+
454
+
455
+ class DependencyAwareLayer(nn.Module):
456
+ def __init__(self, d_model, n_heads=4, attn_dropout_p=0.0, resid_dropout=0.0):
457
+ super().__init__()
458
+ self.cross_attn = MultiHeadCrossAttentionWithRoPE(d_model, n_heads, attn_dropout_p, resid_dropout)
459
+ self.norm = RMSNorm(d_model)
460
+
461
+ def forward(self, hidden_states, sibling_embed, key_padding_mask=None):
462
+ """hidden_states: [batch, seq_len, d_model]
463
+ sibling_embed: Embedding from another subtoken
464
+ """
465
+ attn_out = self.cross_attn(
466
+ query=sibling_embed,
467
+ key=hidden_states,
468
+ value=hidden_states,
469
+ key_padding_mask=key_padding_mask
470
+ )
471
+ return self.norm(hidden_states + attn_out)
472
+
473
+
474
+ class TransformerBlock(nn.Module):
475
+ def __init__(self, d_model, n_heads, ff_dim=1024, ffn_dropout_p=0.0, attn_dropout_p=0.0, resid_dropout_p=0.0):
476
+ super().__init__()
477
+ self.norm1 = RMSNorm(d_model)
478
+ self.self_attn = MultiHeadAttentionWithRoPE(d_model, n_heads, attn_dropout_p, resid_dropout_p)
479
+ self.norm2 = RMSNorm(d_model)
480
+ self.ffn = FeedForward(d_model, ff_dim, ffn_dropout_p)
481
+
482
+ def forward(self, x, key_padding_mask=None):
483
+ residual = x
484
+ x = self.norm1(x)
485
+ attn_out = self.self_attn(x, key_padding_mask=key_padding_mask)
486
+ x = residual + attn_out
487
+
488
+ residual = x
489
+ x = self.norm2(x)
490
+ ffn_out = self.ffn(x)
491
+ x = residual + ffn_out
492
+ return x
493
+
494
+
495
+ class DualHead(nn.Module):
496
+ def __init__(self, s1_bits, s2_bits, d_model):
497
+ super().__init__()
498
+ self.vocab_s1 = 2 ** s1_bits
499
+ self.vocab_s2 = 2 ** s2_bits
500
+ self.proj_s1 = nn.Linear(d_model, self.vocab_s1)
501
+ self.proj_s2 = nn.Linear(d_model, self.vocab_s2)
502
+
503
+ def compute_loss(self, s1_logits, s2_logits, s1_targets, s2_targets, padding_mask=None):
504
+ if padding_mask is not None:
505
+ valid_mask = (padding_mask == 0)
506
+ s1_logits = s1_logits[valid_mask]
507
+ s2_logits = s2_logits[valid_mask]
508
+ s1_targets = s1_targets[valid_mask]
509
+ s2_targets = s2_targets[valid_mask]
510
+ ce_s1 = F.cross_entropy(s1_logits, s1_targets)
511
+ ce_s2 = F.cross_entropy(s2_logits, s2_targets)
512
+ else:
513
+ ce_s1 = F.cross_entropy(s1_logits.reshape(-1, self.vocab_s1), s1_targets.reshape(-1))
514
+ ce_s2 = F.cross_entropy(s2_logits.reshape(-1, self.vocab_s2), s2_targets.reshape(-1))
515
+ ce_loss = (ce_s1 + ce_s2) / 2
516
+ return ce_loss, ce_s1, ce_s2
517
+
518
+ def forward(self, x):
519
+ return self.proj_s1(x)
520
+
521
+ def cond_forward(self, x2):
522
+ return self.proj_s2(x2)
523
+
524
+
525
+ class FixedEmbedding(nn.Module):
526
+ def __init__(self, c_in, d_model):
527
+ super(FixedEmbedding, self).__init__()
528
+
529
+ w = torch.zeros(c_in, d_model).float()
530
+ w.require_grad = False
531
+
532
+ position = torch.arange(0, c_in).float().unsqueeze(1)
533
+ div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()
534
+
535
+ w[:, 0::2] = torch.sin(position * div_term)
536
+ w[:, 1::2] = torch.cos(position * div_term)
537
+
538
+ self.emb = nn.Embedding(c_in, d_model)
539
+ self.emb.weight = nn.Parameter(w, requires_grad=False)
540
+
541
+ def forward(self, x):
542
+ return self.emb(x).detach()
543
+
544
+
545
+ class TemporalEmbedding(nn.Module):
546
+ def __init__(self, d_model, learn_pe):
547
+ super(TemporalEmbedding, self).__init__()
548
+
549
+ minute_size = 60
550
+ hour_size = 24
551
+ weekday_size = 7
552
+ day_size = 32
553
+ month_size = 13
554
+
555
+ Embed = FixedEmbedding if not learn_pe else nn.Embedding
556
+ self.minute_embed = Embed(minute_size, d_model)
557
+ self.hour_embed = Embed(hour_size, d_model)
558
+ self.weekday_embed = Embed(weekday_size, d_model)
559
+ self.day_embed = Embed(day_size, d_model)
560
+ self.month_embed = Embed(month_size, d_model)
561
+
562
+ def forward(self, x):
563
+ x = x.long()
564
+
565
+ minute_x = self.minute_embed(x[:, :, 0])
566
+ hour_x = self.hour_embed(x[:, :, 1])
567
+ weekday_x = self.weekday_embed(x[:, :, 2])
568
+ day_x = self.day_embed(x[:, :, 3])
569
+ month_x = self.month_embed(x[:, :, 4])
570
+
571
+ return hour_x + weekday_x + day_x + month_x + minute_x
572
+
573
+
574
+
payload.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"model_key": "kronos-mini"}
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ flask
2
+ pandas
3
+ huggingface_hub
4
+ transformers
5
+ torch
6
+ gunicorn
test_data.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "k_lines": [
3
+ [1711324800000, "18.545", "19.514", "18.385", "19.395", "2080487", 1711411199999, "1092736.30112304", 59329, "1007730", "529389.05883658", "0"],
4
+ [1711411200000, "19.397", "20.759", "19.356", "20.032", "3020519", 1711497599999, "1502245.89655719", 77276, "1422706", "707574.10254861", "0"],
5
+ [1711497600000, "20.030", "20.211", "19.011", "19.303", "2351359", 1711583999999, "1205611.99079432", 70060, "1150003", "589583.26387940", "0"],
6
+ [1711584000000, "19.310", "19.842", "19.061", "19.174", "1498684", 1711670399999, "772148.06325709", 42672, "730820", "376522.82105490", "0"],
7
+ [1711670400000, "19.176", "19.317", "18.731", "18.997", "1276366", 1711756799999, "672331.34540941", 39575, "576711", "303861.73102728", "0"],
8
+ [1711756800000, "18.997", "19.322", "18.818", "18.962", "1277625", 1711843199999, "669849.29994672", 37466, "570865", "299380.69307957", "0"],
9
+ [1711843200000, "18.961", "19.387", "18.900", "19.197", "673959", 1711929599999, "352343.27851097", 22935, "345672", "180770.39994390", "0"],
10
+ [1711929600000, "19.198", "19.310", "17.865", "18.382", "2094936", 1712015999999, "1136096.28613666", 65345, "935722", "507815.72222223", "0"],
11
+ [1712016000000, "18.383", "18.508", "17.400", "17.976", "2847065", 1712102399999, "1588776.10375730", 92088, "1298542", "724052.81684420", "0"],
12
+ [1712102400000, "17.977", "18.359", "17.405", "17.712", "1464834", 1712188799999, "818927.47579969", 53296, "678165", "378712.54514030", "0"]
13
+ ],
14
+ "prediction_params": {
15
+ "pred_len": 12
16
+ }
17
+ }