Spaces:
Running
Running
Commit
·
8334f8b
1
Parent(s):
1dd235a
feat: Integrate UI control panel and fix CORS issue
Browse files- __pycache__/app.cpython-312.pyc +0 -0
- app.py +23 -2
- index.html +215 -0
- requirements.txt +1 -0
__pycache__/app.cpython-312.pyc
CHANGED
|
Binary files a/__pycache__/app.cpython-312.pyc and b/__pycache__/app.cpython-312.pyc differ
|
|
|
app.py
CHANGED
|
@@ -2,7 +2,8 @@ import os
|
|
| 2 |
import sys
|
| 3 |
import logging
|
| 4 |
from functools import wraps
|
| 5 |
-
from flask import Flask, request, jsonify
|
|
|
|
| 6 |
import torch
|
| 7 |
import pandas as pd
|
| 8 |
from huggingface_hub import hf_hub_download
|
|
@@ -19,6 +20,7 @@ except ImportError as e:
|
|
| 19 |
|
| 20 |
# --- Globals ---
|
| 21 |
app = Flask(__name__)
|
|
|
|
| 22 |
predictor = None
|
| 23 |
model_name_global = "kronos-base" # Use key now
|
| 24 |
API_KEY = os.environ.get("KRONOS_API_KEY")
|
|
@@ -87,6 +89,11 @@ def require_api_key(f):
|
|
| 87 |
|
| 88 |
# --- API Endpoints ---
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
@app.route('/api/load-model', methods=['POST'])
|
| 91 |
@require_api_key
|
| 92 |
def load_model_endpoint():
|
|
@@ -238,7 +245,15 @@ def predict():
|
|
| 238 |
)
|
| 239 |
|
| 240 |
# Format results for JSON response
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
return jsonify({
|
| 244 |
'success': True,
|
|
@@ -249,3 +264,9 @@ def predict():
|
|
| 249 |
except Exception as e:
|
| 250 |
logging.error(f"Prediction failed: {e}")
|
| 251 |
return jsonify({'error': f'An error occurred during prediction: {str(e)}'}), 500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import sys
|
| 3 |
import logging
|
| 4 |
from functools import wraps
|
| 5 |
+
from flask import Flask, request, jsonify, send_from_directory
|
| 6 |
+
from flask_cors import CORS
|
| 7 |
import torch
|
| 8 |
import pandas as pd
|
| 9 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 20 |
|
| 21 |
# --- Globals ---
|
| 22 |
app = Flask(__name__)
|
| 23 |
+
CORS(app) # Enable CORS for all routes
|
| 24 |
predictor = None
|
| 25 |
model_name_global = "kronos-base" # Use key now
|
| 26 |
API_KEY = os.environ.get("KRONOS_API_KEY")
|
|
|
|
| 89 |
|
| 90 |
# --- API Endpoints ---
|
| 91 |
|
| 92 |
+
@app.route('/')
|
| 93 |
+
def index():
|
| 94 |
+
"""Serves the index.html file for the visualizer."""
|
| 95 |
+
return send_from_directory('.', 'index.html')
|
| 96 |
+
|
| 97 |
@app.route('/api/load-model', methods=['POST'])
|
| 98 |
@require_api_key
|
| 99 |
def load_model_endpoint():
|
|
|
|
| 245 |
)
|
| 246 |
|
| 247 |
# Format results for JSON response
|
| 248 |
+
# --- Format results to match input format ---
|
| 249 |
+
pred_df_reset = pred_df.reset_index()
|
| 250 |
+
# Convert timestamp to Unix milliseconds integer
|
| 251 |
+
pred_df_reset['timestamp'] = (pred_df_reset['timestamp'].astype('int64') / 10**6).astype('int64')
|
| 252 |
+
# Reorder columns to match the desired output format: [timestamp, open, high, low, close, volume]
|
| 253 |
+
output_columns = ['timestamp', 'open', 'high', 'low', 'close', 'volume']
|
| 254 |
+
pred_df_formatted = pred_df_reset[output_columns]
|
| 255 |
+
# Convert to list of lists
|
| 256 |
+
prediction_results = pred_df_formatted.values.tolist()
|
| 257 |
|
| 258 |
return jsonify({
|
| 259 |
'success': True,
|
|
|
|
| 264 |
except Exception as e:
|
| 265 |
logging.error(f"Prediction failed: {e}")
|
| 266 |
return jsonify({'error': f'An error occurred during prediction: {str(e)}'}), 500
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
if __name__ == '__main__':
|
| 270 |
+
# This block is for local debugging purposes.
|
| 271 |
+
# The production server will use a WSGI server like Gunicorn.
|
| 272 |
+
app.run(host='0.0.0.0', port=7860, debug=True)
|
index.html
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Kronos API Prediction Visualizer</title>
|
| 7 |
+
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/echarts.min.js"></script>
|
| 8 |
+
<style>
|
| 9 |
+
body { font-family: sans-serif; margin: 2em; }
|
| 10 |
+
.container { max-width: 1200px; margin: auto; }
|
| 11 |
+
.form-group { margin-bottom: 1em; }
|
| 12 |
+
label { display: block; margin-bottom: 0.5em; }
|
| 13 |
+
input, textarea, select { width: 100%; padding: 0.5em; box-sizing: border-box; }
|
| 14 |
+
textarea { min-height: 150px; }
|
| 15 |
+
button { padding: 0.7em 1.5em; cursor: pointer; }
|
| 16 |
+
#chart { width: 100%; height: 600px; margin-top: 2em; border: 1px solid #ccc; }
|
| 17 |
+
.error { color: red; }
|
| 18 |
+
.success { color: green; }
|
| 19 |
+
.status { margin-top: 1em; font-weight: bold; }
|
| 20 |
+
.info { background-color: #f0f0f0; border-left: 4px solid #007bff; padding: 1em; margin-bottom: 1em; }
|
| 21 |
+
hr { margin: 2em 0; }
|
| 22 |
+
</style>
|
| 23 |
+
</head>
|
| 24 |
+
<body>
|
| 25 |
+
<div class="container">
|
| 26 |
+
<h1>Kronos API Control Panel</h1>
|
| 27 |
+
|
| 28 |
+
<div class="info">
|
| 29 |
+
<p>
|
| 30 |
+
For local testing, first run <code>app.py</code> in VS Code (press F5). The API endpoints will be available at <code>http://localhost:7860</code>.
|
| 31 |
+
</p>
|
| 32 |
+
</div>
|
| 33 |
+
|
| 34 |
+
<!-- Section for Model Loading -->
|
| 35 |
+
<section id="model-loader">
|
| 36 |
+
<h2>1. Load Model</h2>
|
| 37 |
+
<div class="form-group">
|
| 38 |
+
<label for="model-select">Available Models:</label>
|
| 39 |
+
<select id="model-select"></select>
|
| 40 |
+
</div>
|
| 41 |
+
<button id="load-model-btn">Load Selected Model</button>
|
| 42 |
+
<div id="model-status" class="status"></div>
|
| 43 |
+
</section>
|
| 44 |
+
|
| 45 |
+
<hr>
|
| 46 |
+
|
| 47 |
+
<!-- Section for Prediction -->
|
| 48 |
+
<section id="predictor">
|
| 49 |
+
<h2>2. Get Prediction</h2>
|
| 50 |
+
<div class="form-group">
|
| 51 |
+
<label for="api-key">API Key (Bearer Token, if required):</label>
|
| 52 |
+
<input type="password" id="api-key" placeholder="Enter your API Key">
|
| 53 |
+
</div>
|
| 54 |
+
<div class="form-group">
|
| 55 |
+
<label for="k-lines">K-line Data (JSON Array of Arrays):</label>
|
| 56 |
+
<textarea id="k-lines" placeholder="Paste your k-line data here..."></textarea>
|
| 57 |
+
</div>
|
| 58 |
+
<div class="form-group">
|
| 59 |
+
<label for="pred-len">Prediction Length:</label>
|
| 60 |
+
<input type="number" id="pred-len" value="120">
|
| 61 |
+
</div>
|
| 62 |
+
<button id="predict-btn">Get Prediction & Visualize</button>
|
| 63 |
+
</section>
|
| 64 |
+
|
| 65 |
+
<div id="chart"></div>
|
| 66 |
+
<div id="error-message" class="status error"></div>
|
| 67 |
+
</div>
|
| 68 |
+
|
| 69 |
+
<script>
|
| 70 |
+
// --- Global DOM Elements ---
|
| 71 |
+
const modelSelect = document.getElementById('model-select');
|
| 72 |
+
const loadModelBtn = document.getElementById('load-model-btn');
|
| 73 |
+
const modelStatusDiv = document.getElementById('model-status');
|
| 74 |
+
const predictBtn = document.getElementById('predict-btn');
|
| 75 |
+
const apiKeyInput = document.getElementById('api-key');
|
| 76 |
+
const kLinesTextarea = document.getElementById('k-lines');
|
| 77 |
+
const predLenInput = document.getElementById('pred-len');
|
| 78 |
+
const chartDom = document.getElementById('chart');
|
| 79 |
+
const errorDiv = document.getElementById('error-message');
|
| 80 |
+
|
| 81 |
+
// --- API Base URLs ---
|
| 82 |
+
// Use relative paths for deployed environment, detect local for testing.
|
| 83 |
+
const isLocal = window.location.hostname === 'localhost' || window.location.hostname === '127.0.0.1';
|
| 84 |
+
const apiBaseUrl = isLocal ? 'http://localhost:7860' : '';
|
| 85 |
+
|
| 86 |
+
// --- Helper Functions ---
|
| 87 |
+
async function apiFetch(endpoint, options) {
|
| 88 |
+
const apiKey = apiKeyInput.value;
|
| 89 |
+
const headers = {
|
| 90 |
+
'Content-Type': 'application/json',
|
| 91 |
+
...options.headers,
|
| 92 |
+
};
|
| 93 |
+
if (apiKey) {
|
| 94 |
+
headers['Authorization'] = `Bearer ${apiKey}`;
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
const response = await fetch(apiBaseUrl + endpoint, { ...options, headers });
|
| 98 |
+
|
| 99 |
+
if (!response.ok) {
|
| 100 |
+
const errorData = await response.json();
|
| 101 |
+
throw new Error(`API Error (${response.status}): ${errorData.error || 'Unknown error'}`);
|
| 102 |
+
}
|
| 103 |
+
return response.json();
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
// --- Model Loading Logic ---
|
| 107 |
+
async function populateModels() {
|
| 108 |
+
try {
|
| 109 |
+
const models = await apiFetch('/api/available-models', { method: 'GET' });
|
| 110 |
+
modelSelect.innerHTML = ''; // Clear existing options
|
| 111 |
+
for (const key in models) {
|
| 112 |
+
const option = document.createElement('option');
|
| 113 |
+
option.value = key;
|
| 114 |
+
option.textContent = `${models[key].name} (${models[key].params}) - ${models[key].description}`;
|
| 115 |
+
modelSelect.appendChild(option);
|
| 116 |
+
}
|
| 117 |
+
} catch (error) {
|
| 118 |
+
modelStatusDiv.className = 'status error';
|
| 119 |
+
modelStatusDiv.textContent = `Failed to fetch models: ${error.message}`;
|
| 120 |
+
}
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
loadModelBtn.addEventListener('click', async () => {
|
| 124 |
+
const modelKey = modelSelect.value;
|
| 125 |
+
modelStatusDiv.className = 'status';
|
| 126 |
+
modelStatusDiv.textContent = `Loading model '${modelKey}'...`;
|
| 127 |
+
try {
|
| 128 |
+
const result = await apiFetch('/api/load-model', {
|
| 129 |
+
method: 'POST',
|
| 130 |
+
body: JSON.stringify({ model_key: modelKey })
|
| 131 |
+
});
|
| 132 |
+
modelStatusDiv.className = 'status success';
|
| 133 |
+
modelStatusDiv.textContent = result.status;
|
| 134 |
+
} catch (error) {
|
| 135 |
+
modelStatusDiv.className = 'status error';
|
| 136 |
+
modelStatusDiv.textContent = error.message;
|
| 137 |
+
}
|
| 138 |
+
});
|
| 139 |
+
|
| 140 |
+
// --- Prediction Logic ---
|
| 141 |
+
predictBtn.addEventListener('click', async () => {
|
| 142 |
+
const kLinesText = kLinesTextarea.value;
|
| 143 |
+
const predLen = parseInt(predLenInput.value, 10);
|
| 144 |
+
|
| 145 |
+
errorDiv.textContent = '';
|
| 146 |
+
const myChart = echarts.init(chartDom);
|
| 147 |
+
myChart.showLoading();
|
| 148 |
+
|
| 149 |
+
if (!kLinesText) {
|
| 150 |
+
errorDiv.textContent = 'K-line data cannot be empty.';
|
| 151 |
+
myChart.hideLoading();
|
| 152 |
+
return;
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
let kLines;
|
| 156 |
+
try {
|
| 157 |
+
kLines = JSON.parse(kLinesText);
|
| 158 |
+
} catch (e) {
|
| 159 |
+
errorDiv.textContent = 'Invalid JSON in K-line data. Please check the format.';
|
| 160 |
+
myChart.hideLoading();
|
| 161 |
+
return;
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
const payload = {
|
| 165 |
+
k_lines: kLines,
|
| 166 |
+
prediction_params: { pred_len: predLen }
|
| 167 |
+
};
|
| 168 |
+
|
| 169 |
+
try {
|
| 170 |
+
const result = await apiFetch('/api/predict', {
|
| 171 |
+
method: 'POST',
|
| 172 |
+
body: JSON.stringify(payload)
|
| 173 |
+
});
|
| 174 |
+
|
| 175 |
+
const historicalData = kLines.map(item => [
|
| 176 |
+
item[0], parseFloat(item[1]), parseFloat(item[4]), parseFloat(item[3]), parseFloat(item[2])
|
| 177 |
+
]);
|
| 178 |
+
|
| 179 |
+
const predictionData = result.prediction_results.map(item => [
|
| 180 |
+
item[0], parseFloat(item[1]), parseFloat(item[4]), parseFloat(item[3]), parseFloat(item[2])
|
| 181 |
+
]);
|
| 182 |
+
|
| 183 |
+
const allTimestamps = [...historicalData.map(d => d[0]), ...predictionData.map(d => d[0])];
|
| 184 |
+
|
| 185 |
+
const option = {
|
| 186 |
+
tooltip: { trigger: 'axis', axisPointer: { type: 'cross' } },
|
| 187 |
+
legend: { data: ['Historical', 'Prediction'] },
|
| 188 |
+
grid: { left: '10%', right: '10%', bottom: '15%' },
|
| 189 |
+
xAxis: { type: 'time', min: allTimestamps[0], max: allTimestamps[allTimestamps.length - 1] },
|
| 190 |
+
yAxis: { scale: true, splitArea: { show: true } },
|
| 191 |
+
dataZoom: [
|
| 192 |
+
{ type: 'inside', start: 50, end: 100 },
|
| 193 |
+
{ show: true, type: 'slider', top: '90%', start: 50, end: 100 }
|
| 194 |
+
],
|
| 195 |
+
series: [
|
| 196 |
+
{ name: 'Historical', type: 'candlestick', data: historicalData, itemStyle: { color: '#00da3c', color0: '#ec0000', borderColor: '#008F28', borderColor0: '#8A0000' } },
|
| 197 |
+
{ name: 'Prediction', type: 'candlestick', data: predictionData, itemStyle: { color: '#4287f5', color0: '#f54242', borderColor: '#285199', borderColor0: '#992828' } }
|
| 198 |
+
]
|
| 199 |
+
};
|
| 200 |
+
|
| 201 |
+
myChart.hideLoading();
|
| 202 |
+
myChart.setOption(option);
|
| 203 |
+
|
| 204 |
+
} catch (error) {
|
| 205 |
+
myChart.hideLoading();
|
| 206 |
+
errorDiv.textContent = error.message;
|
| 207 |
+
console.error('Fetch error:', error);
|
| 208 |
+
}
|
| 209 |
+
});
|
| 210 |
+
|
| 211 |
+
// --- Initial Load ---
|
| 212 |
+
document.addEventListener('DOMContentLoaded', populateModels);
|
| 213 |
+
</script>
|
| 214 |
+
</body>
|
| 215 |
+
</html>
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
flask
|
|
|
|
| 2 |
pandas
|
| 3 |
huggingface_hub
|
| 4 |
transformers
|
|
|
|
| 1 |
flask
|
| 2 |
+
flask-cors
|
| 3 |
pandas
|
| 4 |
huggingface_hub
|
| 5 |
transformers
|