ygyash commited on
Commit
c15e9d4
·
verified ·
1 Parent(s): 2399f17

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -5
README.md CHANGED
@@ -1,4 +1,10 @@
1
  ---
 
 
 
 
 
 
2
  library_name: torch
3
  pipeline_tag: image-classification
4
  ---
@@ -9,16 +15,49 @@ This model is a Convolutional Neural Network (CNN) for Hindi character image cla
9
 
10
  ## Usage
11
 
12
- (Provide instructions on how to load and use your model. Include code snippets.)
13
 
14
- Example:
 
 
 
 
 
 
 
15
 
16
  ```python
 
17
  import torch
18
- from your_model_file import HindiCharacterCNN #replace your_model_file
 
 
19
 
 
20
  model = HindiCharacterCNN(num_labels=36)
21
- model.load_state_dict(torch.load("your_model.safetensors")) #or .bin
22
  model.eval()
23
 
24
- # ... your inference code ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Hindi Character Classifier
3
+ emoji: 🖼️
4
+ colorFrom: red
5
+ colorTo: blue
6
+ sdk: streamlit
7
+ sdk_version: "1.25.0"
8
  library_name: torch
9
  pipeline_tag: image-classification
10
  ---
 
15
 
16
  ## Usage
17
 
18
+ This model is designed to classify images of Hindi characters. It takes a 32x32 pixel RGB image as input and outputs the predicted Hindi character class.
19
 
20
+ **To use this model within a Hugging Face Space (Streamlit example):**
21
+
22
+ 1. **Ensure you have the following files in your space:**
23
+ * `your_model_file.py`: Contains the `HindiCharacterCNN` class definition.
24
+ * `your_model.safetensors`: The model's weights.
25
+ * `app.py`: The Streamlit application script.
26
+ * `requirements.txt`: Lists your dependencies (torch, torchvision, pillow, streamlit).
27
+ 2. **Example `app.py` (Streamlit):**
28
 
29
  ```python
30
+ import streamlit as st
31
  import torch
32
+ from PIL import Image
33
+ import torchvision.transforms as transforms
34
+ from your_model_file import HindiCharacterCNN # Replace with your model file
35
 
36
+ # Load model
37
  model = HindiCharacterCNN(num_labels=36)
38
+ model.load_state_dict(torch.load("your_model.safetensors", map_location=torch.device('cpu')))
39
  model.eval()
40
 
41
+ # Preprocessing
42
+ transform = transforms.Compose([
43
+ transforms.Resize((32, 32)),
44
+ transforms.ToTensor(),
45
+ ])
46
+
47
+ st.title("Hindi Character Classification")
48
+
49
+ uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
50
+
51
+ if uploaded_file is not None:
52
+ image = Image.open(uploaded_file).convert('RGB')
53
+ st.image(image, caption="Uploaded Image.", use_column_width=True)
54
+ st.write("")
55
+ st.write("Classifying...")
56
+
57
+ image = transform(image).unsqueeze(0)
58
+
59
+ with torch.no_grad():
60
+ output = model(image)
61
+ probabilities = torch.nn.functional.softmax(output[0], dim=0)
62
+ _, predicted_class = torch.max(probabilities, 0)
63
+ st.write(f"Predicted Class: {int(predicted_class)}")