import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch() from datasets import load_dataset ds = load_dataset("AI-MO/NuminaMath-CoT") from datasets import load_dataset from datasets import load_dataset import gradio as gr def show_data(): # 加载数据集 dataset = load_dataset("AI-MO/NuminaMath-CoT") train_data = dataset["train"][:5] return train_data # 使用 Gradio 界面显示测试数据 demo = gr.Interface(fn=show_data, inputs=None, outputs="text", title="数据集测试") demo.launch() from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments # 加载预训练模型和分词器 model_name = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") model = AutoModelForCausalLM.from_pretrained(model_name) # 数据集预处理 def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) # 微调训练参数 training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=4, num_train_epochs=3, weight_decay=0.01, ) # 微调 trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"], ) trainer.train()