retinapp / app.py
yomna-ashraf's picture
Rename app.py.py to app.py
8e13042 verified
import streamlit as st
from flask import Flask, request, jsonify
from flask_cors import CORS
from transformers import AutoModelForImageClassification, AutoProcessor
from PIL import Image
import io
import fitz
import torch
app = Flask(__name__)
CORS(app)
model_name = "AsmaaElnagger/Diabetic_RetinoPathy_detection"
model = AutoModelForImageClassification.from_pretrained(model_name)
processor = AutoProcessor.from_pretrained(model_name)
def pdf_to_images_pymupdf(pdf_data):
try:
pdf_document = fitz.open(stream=pdf_data, filetype="pdf")
images = []
for page_num in range(pdf_document.page_count):
page = pdf_document.load_page(page_num)
pix = page.get_pixmap()
img_data = pix.tobytes("jpeg")
images.append(img_data)
return images
except Exception as e:
print(f"Error converting PDF: {e}")
return None
@app.route('/classify', methods=['POST', 'OPTIONS'])
def classify_file():
if 'file' not in request.files:
return jsonify({'error': 'No file provided'}), 400
uploaded_file = request.files['file']
file_type = uploaded_file.filename.rsplit('.', 1)[1].lower()
try:
if file_type in ['jpg', 'jpeg', 'png', 'gif']:
img_data = uploaded_file.read()
image = Image.open(io.BytesIO(img_data)).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
result = model.config.id2label[predicted_class_idx]
return jsonify({'result': result})
elif file_type == 'pdf':
pdf_data = uploaded_file.read()
images = pdf_to_images_pymupdf(pdf_data)
if images:
image = Image.open(io.BytesIO(images[0])).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
result = model.config.id2label[predicted_class_idx]
return jsonify({'result': result})
else:
return jsonify({'error': 'PDF conversion failed.'}), 500
else:
return jsonify({'error': 'Unsupported file type'}), 400
except Exception as e:
return jsonify({'error': f'An error occurred: {e}'}), 500
def main():
st.title("RetinApp Backend Status")
st.write("Flask backend is running and ready for classification requests.")
if __name__ == '__main__':
main() # Run the Streamlit app (which will also run the Flask app)
# The Flask app will be accessible on the same server where Streamlit is running.
# When deployed on Hugging Face Spaces, Streamlit will handle the serving.