Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py.py +80 -0
- requirements.txt +7 -0
app.py.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from flask import Flask, request, jsonify
|
3 |
+
from flask_cors import CORS
|
4 |
+
from transformers import AutoModelForImageClassification, AutoProcessor
|
5 |
+
from PIL import Image
|
6 |
+
import io
|
7 |
+
import fitz
|
8 |
+
import torch
|
9 |
+
|
10 |
+
app = Flask(__name__)
|
11 |
+
CORS(app)
|
12 |
+
|
13 |
+
model_name = "AsmaaElnagger/Diabetic_RetinoPathy_detection"
|
14 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
15 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
16 |
+
|
17 |
+
def pdf_to_images_pymupdf(pdf_data):
|
18 |
+
try:
|
19 |
+
pdf_document = fitz.open(stream=pdf_data, filetype="pdf")
|
20 |
+
images = []
|
21 |
+
for page_num in range(pdf_document.page_count):
|
22 |
+
page = pdf_document.load_page(page_num)
|
23 |
+
pix = page.get_pixmap()
|
24 |
+
img_data = pix.tobytes("jpeg")
|
25 |
+
images.append(img_data)
|
26 |
+
return images
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Error converting PDF: {e}")
|
29 |
+
return None
|
30 |
+
|
31 |
+
@app.route('/classify', methods=['POST', 'OPTIONS'])
|
32 |
+
def classify_file():
|
33 |
+
if 'file' not in request.files:
|
34 |
+
return jsonify({'error': 'No file provided'}), 400
|
35 |
+
|
36 |
+
uploaded_file = request.files['file']
|
37 |
+
file_type = uploaded_file.filename.rsplit('.', 1)[1].lower()
|
38 |
+
|
39 |
+
try:
|
40 |
+
if file_type in ['jpg', 'jpeg', 'png', 'gif']:
|
41 |
+
img_data = uploaded_file.read()
|
42 |
+
image = Image.open(io.BytesIO(img_data)).convert("RGB")
|
43 |
+
inputs = processor(images=image, return_tensors="pt")
|
44 |
+
with torch.no_grad():
|
45 |
+
outputs = model(**inputs)
|
46 |
+
logits = outputs.logits
|
47 |
+
predicted_class_idx = logits.argmax(-1).item()
|
48 |
+
result = model.config.id2label[predicted_class_idx]
|
49 |
+
return jsonify({'result': result})
|
50 |
+
|
51 |
+
elif file_type == 'pdf':
|
52 |
+
pdf_data = uploaded_file.read()
|
53 |
+
images = pdf_to_images_pymupdf(pdf_data)
|
54 |
+
|
55 |
+
if images:
|
56 |
+
image = Image.open(io.BytesIO(images[0])).convert("RGB")
|
57 |
+
inputs = processor(images=image, return_tensors="pt")
|
58 |
+
with torch.no_grad():
|
59 |
+
outputs = model(**inputs)
|
60 |
+
logits = outputs.logits
|
61 |
+
predicted_class_idx = logits.argmax(-1).item()
|
62 |
+
result = model.config.id2label[predicted_class_idx]
|
63 |
+
return jsonify({'result': result})
|
64 |
+
else:
|
65 |
+
return jsonify({'error': 'PDF conversion failed.'}), 500
|
66 |
+
|
67 |
+
else:
|
68 |
+
return jsonify({'error': 'Unsupported file type'}), 400
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
return jsonify({'error': f'An error occurred: {e}'}), 500
|
72 |
+
|
73 |
+
def main():
|
74 |
+
st.title("RetinApp Backend Status")
|
75 |
+
st.write("Flask backend is running and ready for classification requests.")
|
76 |
+
|
77 |
+
if __name__ == '__main__':
|
78 |
+
main() # Run the Streamlit app (which will also run the Flask app)
|
79 |
+
# The Flask app will be accessible on the same server where Streamlit is running.
|
80 |
+
# When deployed on Hugging Face Spaces, Streamlit will handle the serving.
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
flask
|
3 |
+
flask-cors
|
4 |
+
transformers
|
5 |
+
torch
|
6 |
+
Pillow
|
7 |
+
PyMuPDF
|