Spaces:
Build error
Build error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import einops
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
from pytorch_lightning import seed_everything
|
| 8 |
+
from util import resize_image, HWC3, apply_canny
|
| 9 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
| 10 |
+
from annotator.openpose import apply_openpose
|
| 11 |
+
from cldm.model import create_model, load_state_dict
|
| 12 |
+
from huggingface_hub import hf_hub_url, cached_download
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
REPO_ID = "Thaweewat/ControlNet-Architecture"
|
| 17 |
+
canny_checkpoint = "models/control_sd15_canny.pth"
|
| 18 |
+
scribble_checkpoint = "models/control_sd15_scribble.pth"
|
| 19 |
+
pose_checkpoint = "models/control_sd15_openpose.pth"
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
canny_model = create_model('./models/cldm_v15.yaml').cpu()
|
| 23 |
+
canny_model.load_state_dict(load_state_dict(cached_download(
|
| 24 |
+
hf_hub_url(REPO_ID, canny_checkpoint)
|
| 25 |
+
), location='cpu'))
|
| 26 |
+
canny_model = canny_model.cuda()
|
| 27 |
+
ddim_sampler = DDIMSampler(canny_model)
|
| 28 |
+
|
| 29 |
+
pose_model = create_model('./models/cldm_v15.yaml').cpu()
|
| 30 |
+
pose_model.load_state_dict(load_state_dict(cached_download(
|
| 31 |
+
hf_hub_url(REPO_ID, pose_checkpoint)
|
| 32 |
+
), location='cpu'))
|
| 33 |
+
pose_model = pose_model.cuda()
|
| 34 |
+
ddim_sampler_pose = DDIMSampler(pose_model)
|
| 35 |
+
|
| 36 |
+
scribble_model = create_model('./models/cldm_v15.yaml').cpu()
|
| 37 |
+
scribble_model.load_state_dict(load_state_dict(cached_download(
|
| 38 |
+
hf_hub_url(REPO_ID, scribble_checkpoint)
|
| 39 |
+
), location='cpu'))
|
| 40 |
+
scribble_model = scribble_model.cuda()
|
| 41 |
+
ddim_sampler_scribble = DDIMSampler(scribble_model)
|
| 42 |
+
|
| 43 |
+
save_memory = False
|
| 44 |
+
|
| 45 |
+
def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
| 46 |
+
# TODO: Add other control tasks
|
| 47 |
+
if input_control == "Scribble":
|
| 48 |
+
return process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta)
|
| 49 |
+
elif input_control == "Pose":
|
| 50 |
+
return process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, image_resolution, ddim_steps, scale, seed, eta)
|
| 51 |
+
|
| 52 |
+
return process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold)
|
| 53 |
+
|
| 54 |
+
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
img = resize_image(HWC3(input_image), image_resolution)
|
| 57 |
+
H, W, C = img.shape
|
| 58 |
+
|
| 59 |
+
detected_map = apply_canny(img, low_threshold, high_threshold)
|
| 60 |
+
detected_map = HWC3(detected_map)
|
| 61 |
+
|
| 62 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 63 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 64 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 65 |
+
|
| 66 |
+
seed_everything(seed)
|
| 67 |
+
|
| 68 |
+
if save_memory:
|
| 69 |
+
canny_model.low_vram_shift(is_diffusing=False)
|
| 70 |
+
|
| 71 |
+
cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
| 72 |
+
un_cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 73 |
+
shape = (4, H // 8, W // 8)
|
| 74 |
+
|
| 75 |
+
if save_memory:
|
| 76 |
+
canny_model.low_vram_shift(is_diffusing=False)
|
| 77 |
+
|
| 78 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 79 |
+
shape, cond, verbose=False, eta=eta,
|
| 80 |
+
unconditional_guidance_scale=scale,
|
| 81 |
+
unconditional_conditioning=un_cond)
|
| 82 |
+
|
| 83 |
+
if save_memory:
|
| 84 |
+
canny_model.low_vram_shift(is_diffusing=False)
|
| 85 |
+
|
| 86 |
+
x_samples = canny_model.decode_first_stage(samples)
|
| 87 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 88 |
+
|
| 89 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 90 |
+
return [255 - detected_map] + results
|
| 91 |
+
|
| 92 |
+
def process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta):
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
img = resize_image(HWC3(input_image), image_resolution)
|
| 95 |
+
H, W, C = img.shape
|
| 96 |
+
|
| 97 |
+
detected_map = np.zeros_like(img, dtype=np.uint8)
|
| 98 |
+
detected_map[np.min(img, axis=2) < 127] = 255
|
| 99 |
+
|
| 100 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 101 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 102 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 103 |
+
|
| 104 |
+
seed_everything(seed)
|
| 105 |
+
|
| 106 |
+
if save_memory:
|
| 107 |
+
scribble_model.low_vram_shift(is_diffusing=False)
|
| 108 |
+
|
| 109 |
+
cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
| 110 |
+
un_cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 111 |
+
shape = (4, H // 8, W // 8)
|
| 112 |
+
|
| 113 |
+
if save_memory:
|
| 114 |
+
scribble_model.low_vram_shift(is_diffusing=False)
|
| 115 |
+
|
| 116 |
+
samples, intermediates = ddim_sampler_scribble.sample(ddim_steps, num_samples,
|
| 117 |
+
shape, cond, verbose=False, eta=eta,
|
| 118 |
+
unconditional_guidance_scale=scale,
|
| 119 |
+
unconditional_conditioning=un_cond)
|
| 120 |
+
|
| 121 |
+
if save_memory:
|
| 122 |
+
scribble_model.low_vram_shift(is_diffusing=False)
|
| 123 |
+
|
| 124 |
+
x_samples = scribble_model.decode_first_stage(samples)
|
| 125 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 126 |
+
|
| 127 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 128 |
+
return [255 - detected_map] + results
|
| 129 |
+
|
| 130 |
+
def process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta):
|
| 131 |
+
with torch.no_grad():
|
| 132 |
+
input_image = HWC3(input_image)
|
| 133 |
+
detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution))
|
| 134 |
+
detected_map = HWC3(detected_map)
|
| 135 |
+
img = resize_image(input_image, image_resolution)
|
| 136 |
+
H, W, C = img.shape
|
| 137 |
+
|
| 138 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
|
| 139 |
+
|
| 140 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 141 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 142 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 143 |
+
|
| 144 |
+
if seed == -1:
|
| 145 |
+
seed = random.randint(0, 65535)
|
| 146 |
+
seed_everything(seed)
|
| 147 |
+
|
| 148 |
+
if save_memory:
|
| 149 |
+
pose_model.low_vram_shift(is_diffusing=False)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
| 153 |
+
un_cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 154 |
+
shape = (4, H // 8, W // 8)
|
| 155 |
+
|
| 156 |
+
if save_memory:
|
| 157 |
+
pose_model.low_vram_shift(is_diffusing=False)
|
| 158 |
+
|
| 159 |
+
samples, intermediates = ddim_sampler_pose.sample(ddim_steps, num_samples,
|
| 160 |
+
shape, cond, verbose=False, eta=eta,
|
| 161 |
+
unconditional_guidance_scale=scale,
|
| 162 |
+
unconditional_conditioning=un_cond)
|
| 163 |
+
|
| 164 |
+
if save_memory:
|
| 165 |
+
pose_model.low_vram_shift(is_diffusing=False)
|
| 166 |
+
|
| 167 |
+
x_samples = pose_model.decode_first_stage(samples)
|
| 168 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 169 |
+
|
| 170 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 171 |
+
return [detected_map] + results
|
| 172 |
+
|
| 173 |
+
def create_canvas(w, h):
|
| 174 |
+
new_control_options = ["Interactive Scribble"]
|
| 175 |
+
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
block = gr.Blocks().queue()
|
| 179 |
+
control_task_list = [
|
| 180 |
+
"Canny Edge Map",
|
| 181 |
+
"Scribble",
|
| 182 |
+
"Pose"
|
| 183 |
+
]
|
| 184 |
+
with block:
|
| 185 |
+
gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models")
|
| 186 |
+
gr.HTML('''
|
| 187 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
| 188 |
+
This is an unofficial demo for ControlNet, which is a neural network structure to control diffusion models by adding extra conditions such as canny edge detection. The demo is based on the <a href="https://github.com/lllyasviel/ControlNet" style="text-decoration: underline;" target="_blank"> Github </a> implementation.
|
| 189 |
+
</p>
|
| 190 |
+
''')
|
| 191 |
+
gr.HTML("<p>You can duplicate this Space to run it privately without a queue and load additional checkpoints. : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/ControlNet?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> <a style='display:inline-block' href='https://colab.research.google.com/github/camenduru/controlnet-colab/blob/main/controlnet-colab.ipynb'><img src = 'https://colab.research.google.com/assets/colab-badge.svg' alt='Open in Colab'></a></p>")
|
| 192 |
+
with gr.Row():
|
| 193 |
+
with gr.Column():
|
| 194 |
+
input_image = gr.Image(source='upload', type="numpy")
|
| 195 |
+
input_control = gr.Dropdown(control_task_list, value="Scribble", label="Control Task")
|
| 196 |
+
prompt = gr.Textbox(label="Prompt")
|
| 197 |
+
run_button = gr.Button(label="Run")
|
| 198 |
+
|
| 199 |
+
with gr.Accordion("Advanced options", open=False):
|
| 200 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 201 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
|
| 202 |
+
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
|
| 203 |
+
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
|
| 204 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 205 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 206 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
|
| 207 |
+
eta = gr.Slider(label="eta (DDIM)", minimum=0.0,maximum =1.0, value=0.0, step=0.1)
|
| 208 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
| 209 |
+
n_prompt = gr.Textbox(label="Negative Prompt",
|
| 210 |
+
value='longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality')
|
| 211 |
+
with gr.Column():
|
| 212 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
|
| 213 |
+
ips = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold]
|
| 214 |
+
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
| 215 |
+
examples_list = [
|
| 216 |
+
[
|
| 217 |
+
"bird.png",
|
| 218 |
+
"bird",
|
| 219 |
+
"Canny Edge Map",
|
| 220 |
+
"best quality, extremely detailed",
|
| 221 |
+
'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
|
| 222 |
+
1,
|
| 223 |
+
512,
|
| 224 |
+
20,
|
| 225 |
+
9.0,
|
| 226 |
+
123490213,
|
| 227 |
+
0.0,
|
| 228 |
+
100,
|
| 229 |
+
200
|
| 230 |
+
|
| 231 |
+
],
|
| 232 |
+
|
| 233 |
+
[
|
| 234 |
+
"turtle.png",
|
| 235 |
+
"turtle",
|
| 236 |
+
"Scribble",
|
| 237 |
+
"best quality, extremely detailed",
|
| 238 |
+
'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
|
| 239 |
+
1,
|
| 240 |
+
512,
|
| 241 |
+
20,
|
| 242 |
+
9.0,
|
| 243 |
+
123490213,
|
| 244 |
+
0.0,
|
| 245 |
+
100,
|
| 246 |
+
200
|
| 247 |
+
|
| 248 |
+
],
|
| 249 |
+
[
|
| 250 |
+
"pose1.png",
|
| 251 |
+
"Chef in the Kitchen",
|
| 252 |
+
"Pose",
|
| 253 |
+
"best quality, extremely detailed",
|
| 254 |
+
'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
|
| 255 |
+
1,
|
| 256 |
+
512,
|
| 257 |
+
20,
|
| 258 |
+
9.0,
|
| 259 |
+
123490213,
|
| 260 |
+
0.0,
|
| 261 |
+
100,
|
| 262 |
+
200
|
| 263 |
+
|
| 264 |
+
]
|
| 265 |
+
]
|
| 266 |
+
examples = gr.Examples(examples=examples_list,inputs = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold], outputs = [result_gallery], cache_examples = True, fn = process)
|
| 267 |
+
gr.Markdown("")
|
| 268 |
+
|
| 269 |
+
block.launch(debug = True)
|