import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_MAX_NEW_TOKENS = 8192 DEFAULT_MAX_NEW_TOKENS = 2048 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # Turkish LLaMA 8B Chat This Space demonstrates [Turkish-Llama-8b-DPO-v0.1](https://huggingface.co/ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1) by YTU COSMOS Research Group, an 8B parameter model fine-tuned for Turkish language understanding and generation. Feel free to play with it, or duplicate to run generations without a queue! 🔎 This model is the newest and most advanced iteration of CosmosLLama, developed by merging two distinctly trained CosmosLLaMa-Instruct DPO models. 🤖 The model is optimized for Turkish language tasks and can handle various text generation scenarios including conversations, instructions, and general text completion. 💡 You can also try the model on the official demo page: [cosmos.yildiz.edu.tr/cosmosllama](https://cosmos.yildiz.edu.tr/cosmosllama) """ LICENSE = """

--- This demo uses [Turkish-Llama-8b-DPO-v0.1](https://huggingface.co/ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1) by YTU COSMOS Research Group, and is governed by the original llama3 license. """ if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" if torch.cuda.is_available(): model_id = "ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1" model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, ) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False TERMINATORS = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] @spaces.GPU def generate( message: str, chat_history: list[dict], system_prompt: str = "", max_new_tokens: int = 2048, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.0, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) conversation += chat_history conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template( conversation, add_generation_prompt=True, return_tensors="pt" ) if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, eos_token_id=TERMINATORS, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox( label="System prompt", lines=6, value="Sen bir yapay zeka asistanısın. Kullanıcı sana bir görev verecek. Amacın görevi olabildiğince sadık bir şekilde tamamlamak. Görevi yerine getirirken adım adım düşün ve adımlarını gerekçelendir.", ), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0, ), ], stop_btn=None, examples=[ ["Merhaba! Nasılsın?"], ["Yapay zeka alanında açık kaynak kodun faydaları nelerdir?"], ], cache_examples=False, type="messages", ) with gr.Blocks(css_paths="style.css", fill_height=True) as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20).launch()