import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import spaces from threading import Thread from typing import Iterator # Add markdown header header = """ # 🐦‍⬛ MagpieLMs: Open LLMs with Fully Transparent Alignment Recipes 💬 We've aligned Llama-3.1-8B and a 4B version (distilled by NVIDIA) using purely synthetic data generated by our [Magpie](https://arxiv.org/abs/2406.08464) method. Our open-source post-training recipe includes: SFT and DPO data, all training configs + logs. This allows everyone to reproduce the alignment process for their own research. Note that our data does not contain any GPT-generated data, and has a much friendly license for both commercial and academic use. 🔗 Links: [**Magpie Collection**](https://huggingface.co/collections/Magpie-Align/magpielm-66e2221f31fa3bf05b10786a); [**Magpie Paper**](https://arxiv.org/abs/2406.08464) 📮 Contact: [Zhangchen Xu](https://zhangchenxu.com) and [Bill Yuchen Lin](https://yuchenlin.xyz). --- """ # Load model and tokenizer model_name = "Magpie-Align/MagpieLM-4B-Chat-v0.1" device = "cuda" # the device to load the model onto tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", ignore_mismatched_sizes=True ) model.to(device) MAX_INPUT_TOKEN_LENGTH = 4096 # You may need to adjust this value @spaces.GPU def respond( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chatbot = gr.Chatbot(placeholder="MagpieLM-Chat-4B (v0.1)") demo = gr.ChatInterface( fn=respond, chatbot=chatbot, additional_inputs=[ gr.Textbox(value="You are Magpie, a helpful AI assistant. For simple queries, try to answer them directly; for complex questions, try to think step-by-step before providing an answer.", label="System message"), gr.Slider(minimum=128, maximum=2048, value=512, step=64, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)", ), gr.Slider(minimum=0.5, maximum=1.5, value=1.0, step=0.1, label="Repetition Penalty"), ], description=header, # Add the header as the description title="MagpieLM-4B Chat (v0.1)", theme=gr.themes.Soft(), examples=[ ["Hello, what is your name?"], ["Can you write a poem for me?"], ["What's the meaning of life?"], ] ) # set a default message in the chatbox to start the conversation # demo.chatbot.placeholder = "Hello! What's your name?" if __name__ == "__main__": demo.queue() demo.launch(share=True, show_api=False)