Spaces:
Running
Running
File size: 15,349 Bytes
b82263e cbdb152 b82263e cbdb152 b82263e cbdb152 b82263e cbdb152 b82263e cbdb152 b82263e d93bc09 b82263e d93bc09 b82263e cbdb152 b82263e cbdb152 d93bc09 cbdb152 b82263e cbdb152 b82263e cbdb152 b82263e d93bc09 cbdb152 b82263e cbdb152 b82263e cbdb152 b82263e cbdb152 c5e7f88 c2f454d b82263e b0b2255 cbdb152 b82263e c2f454d b82263e 71d6f85 d93bc09 cbdb152 71d6f85 d93bc09 cbdb152 d93bc09 b82263e 9aa9bdf b82263e 9aa9bdf b82263e 9aa9bdf b82263e cbdb152 b82263e cbdb152 b82263e cbdb152 9aa9bdf b82263e b0b2255 b82263e b0b2255 b82263e b0b2255 b82263e b0b2255 b82263e b0b2255 d93bc09 b82263e d93bc09 b82263e cbdb152 9aa9bdf b82263e d93bc09 b82263e d93bc09 b82263e d93bc09 b82263e d93bc09 b82263e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import streamlit as st
from PIL import Image
import torch
from torchvision import transforms
import pydeck as pdk
from geopy.geocoders import Nominatim
import time
import requests
from io import BytesIO
import reverse_geocoder as rg
from bs4 import BeautifulSoup
from urllib.parse import urljoin
from models.huggingface import Geolocalizer
import spacy
from collections import Counter
from spacy.cli import download
from typing import Tuple, List, Optional, Union, Dict
def load_spacy_model(model_name: str = "en_core_web_md") -> spacy.Language:
"""
Load the specified spaCy model.
Args:
model_name (str): Name of the spaCy model to load.
Returns:
spacy.Language: Loaded spaCy model.
"""
try:
return spacy.load(model_name)
except IOError:
print(f"Model {model_name} not found, downloading...")
download(model_name)
return spacy.load(model_name)
nlp = load_spacy_model()
IMAGE_SIZE = (224, 224)
GEOLOC_MODEL_NAME = "osv5m/baseline"
@st.cache_resource(show_spinner=True)
def load_geoloc_model() -> Optional[Geolocalizer]:
"""
Load the geolocation model.
Returns:
Optional[Geolocalizer]: Loaded geolocation model or None if loading fails.
"""
with st.spinner('Loading model...'):
try:
model = Geolocalizer.from_pretrained(GEOLOC_MODEL_NAME)
model.eval()
return model
except Exception as e:
st.error(f"Failed to load the model: {e}")
return None
def most_frequent_locations(text: str) -> Tuple[str, List[str]]:
"""
Find the most frequent locations mentioned in the text.
Args:
text (str): Input text to analyze.
Returns:
Tuple[str, List[str]]: Description of the most mentioned locations and a list of those locations.
"""
doc = nlp(text)
locations = []
for ent in doc.ents:
if ent.label_ in ['LOC', 'GPE']:
print(f"Entity: {ent.text} | Label: {ent.label_} | Sentence: {ent.sent}")
locations.append(ent.text)
if locations:
location_counts = Counter(locations)
most_common_locations = location_counts.most_common(2)
common_locations_str = ', '.join([f"{loc[0]} ({loc[1]} occurrences)" for loc in most_common_locations])
return f"Most Mentioned Locations: {common_locations_str}", [loc[0] for loc in most_common_locations]
else:
return "No locations found", []
def transform_image(image: Image) -> torch.Tensor:
"""
Transform the input image for model prediction.
Args:
image (Image): Input image.
Returns:
torch.Tensor: Transformed image tensor.
"""
transform = transforms.Compose([
transforms.Resize(IMAGE_SIZE),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
def check_location_match(location_query: dict, most_common_locations: List[str]) -> bool:
"""
Check if the predicted location matches any of the most common locations.
Args:
location_query (dict): Predicted location details.
most_common_locations (List[str]): List of most common locations.
Returns:
bool: True if a match is found, False otherwise.
"""
name = location_query['name']
admin1 = location_query['admin1']
cc = location_query['cc']
for loc in most_common_locations:
if name in loc and admin1 in loc and cc in loc:
return True
return False
def get_city_geojson(location_name: str) -> Optional[dict]:
"""
Fetch the GeoJSON data for the specified city.
Args:
location_name (str): Name of the city.
Returns:
Optional[dict]: GeoJSON data of the city or None if fetching fails.
"""
geolocator = Nominatim(user_agent="predictGeolocforImage")
try:
location = geolocator.geocode(location_name, geometry='geojson')
return location.raw['geojson'] if location else None
except Exception as e:
st.error(f"Failed to geocode location: {e}")
return None
def get_media(url: str) -> Optional[List[Tuple[str, str]]]:
"""
Fetch media URLs and associated text from the specified URL.
Args:
url (str): URL to fetch media from.
Returns:
Optional[List[Tuple[str, str]]]: List of tuples containing media URLs and associated text or None if fetching fails.
"""
try:
response = requests.get(url)
response.raise_for_status()
data = response.json()
return [(media['media_url'], entry['full_text'])
for entry in data for media in entry.get('media', []) if 'media_url' in media]
except requests.RequestException as e:
st.error(f"Failed to fetch media URL: {e}")
return None
def predict_location(image: Image, model: Geolocalizer) -> Optional[Tuple[List[float], dict, Optional[dict], float]]:
"""
Predict the location from the input image using the specified model.
Args:
image (Image): Input image.
model (Geolocalizer): Geolocation model.
Returns:
Optional[Tuple[List[float], dict, Optional[dict], float]]: Predicted GPS coordinates, location query, city GeoJSON data, and processing time or None if prediction fails.
"""
with st.spinner('Processing image and predicting location...'):
start_time = time.time()
try:
img_tensor = transform_image(image)
gps_radians = model(img_tensor)
gps_degrees = torch.rad2deg(gps_radians).squeeze(0).cpu().tolist()
location_query = rg.search((gps_degrees[0], gps_degrees[1]))[0]
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
city_geojson = get_city_geojson(location_name)
processing_time = time.time() - start_time
return gps_degrees, location_query, city_geojson, processing_time
except Exception as e:
st.error(f"Failed to predict the location: {e}")
return None
def display_map(city_geojson: dict, gps_degrees: List[float]) -> None:
"""
Display a map with the specified city GeoJSON data and GPS coordinates.
Args:
city_geojson (dict): GeoJSON data of the city.
gps_degrees (List[float]): GPS coordinates.
"""
map_view = pdk.Deck(
map_style='mapbox://styles/mapbox/light-v9',
initial_view_state=pdk.ViewState(
latitude=gps_degrees[0],
longitude=gps_degrees[1],
zoom=8,
pitch=0,
),
layers=[
pdk.Layer(
'GeoJsonLayer',
data=city_geojson,
get_fill_color=[255, 180, 0, 140],
pickable=True,
stroked=True,
filled=True,
extruded=False,
line_width_min_pixels=1,
),
],
)
st.pydeck_chart(map_view)
def display_image(image_url: str) -> None:
"""
Display an image from the specified URL.
Args:
image_url (str): URL of the image.
"""
try:
response = requests.get(image_url)
response.raise_for_status()
image_bytes = BytesIO(response.content)
st.image(image_bytes, caption=f'Image from URL: {image_url}', use_column_width=True)
except requests.RequestException as e:
st.error(f"Failed to fetch image at URL {image_url}: {e}")
except Exception as e:
st.error(f"An error occurred: {e}")
def scrape_webpage(url: str) -> Union[Tuple[Optional[str], Optional[List[str]]], Tuple[None, None]]:
"""
Scrape the specified webpage for text and images.
Args:
url (str): URL of the webpage to scrape.
Returns:
Union[Tuple[Optional[str], Optional[List[str]]], Tuple[None, None]]: Extracted text and list of image URLs or None if scraping fails.
"""
with st.spinner('Scraping web page...'):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
base_url = url # Adjust based on <base> tags or other HTML clues
text = ''.join(p.text for p in soup.find_all('p'))
images = [urljoin(base_url, img['src']) for img in soup.find_all('img') if 'src' in img.attrs]
return text, images
except requests.RequestException as e:
st.error(f"Failed to fetch and parse the URL: {e}")
return None, None
def main() -> None:
"""
Main function to run the Streamlit app.
"""
st.title('Welcome to Geolocation Guesstimation Demo 👋')
page = st.sidebar.selectbox(
"Choose your action:",
("Home", "Images", "Social Media", "Web Pages"),
index=0
)
st.sidebar.success("Select a demo above.")
st.sidebar.info(
"""
- Web App URL: <https://yunusserhat-guesstimatelocation.hf.space/>
"""
)
st.sidebar.title("Contact")
st.sidebar.info(
"""
Yunus Serhat Bıçakçı at [yunusserhat.com](https://yunusserhat.com) | [GitHub](https://github.com/yunusserhat) | [Twitter](https://twitter.com/yunusserhat) | [LinkedIn](https://www.linkedin.com/in/yunusserhat)
"""
)
if page == "Home":
st.write("Welcome to the Geolocation Predictor. Please select an action from the sidebar dropdown.")
elif page == "Images":
upload_images_page()
elif page == "Social Media":
social_media_page()
elif page == "Web Pages":
web_page_url_page()
def upload_images_page() -> None:
"""
Display the image upload page for geolocation prediction.
"""
st.header("Image Upload for Geolocation Prediction")
uploaded_files = st.file_uploader("Choose images...", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
if uploaded_files:
for idx, file in enumerate(uploaded_files, start=1):
with st.spinner(f"Processing {file.name}..."):
image = Image.open(file).convert('RGB')
st.image(image, caption=f'Uploaded Image: {file.name}', use_column_width=True)
model = load_geoloc_model()
if model:
result = predict_location(image, model)
if result:
gps_degrees, location_query, city_geojson, processing_time = result
st.write(
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
if city_geojson:
display_map(city_geojson, gps_degrees)
st.write(f"Processing Time (seconds): {processing_time}")
def social_media_page() -> None:
"""
Display the social media analysis page.
"""
st.header("Social Media Analyser")
social_media_url = st.text_input("Enter a social media URL to analyse:", key='social_media_url_input')
if social_media_url:
media_data = get_media(social_media_url)
if media_data:
full_text = media_data[0][1]
st.subheader("Full Text")
st.write(full_text)
most_used_location, most_common_locations = most_frequent_locations(full_text)
st.subheader("Most Frequent Location")
st.write(most_used_location)
for idx, (media_url, _) in enumerate(media_data, start=1):
st.subheader(f"Image {idx}")
response = requests.get(media_url)
if response.status_code == 200:
image = Image.open(BytesIO(response.content)).convert('RGB')
st.image(image, caption=f'Image from URL: {media_url}', use_column_width=True)
model = load_geoloc_model()
if model:
result = predict_location(image, model)
if result:
gps_degrees, location_query, city_geojson, processing_time = result
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
st.write(
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
if city_geojson:
display_map(city_geojson, gps_degrees)
st.write(f"Processing Time (seconds): {processing_time}")
if check_location_match(location_query, most_common_locations):
st.success(
f"The predicted location {location_name} matches one of the most frequently mentioned locations!")
else:
st.error(f"Failed to fetch image at URL {media_url}: HTTP {response.status_code}")
def web_page_url_page() -> None:
"""
Display the web page URL analysis page.
"""
st.header("Web Page Analyser")
web_page_url = st.text_input("Enter a web page URL to scrape:", key='web_page_url_input')
if web_page_url:
text, images = scrape_webpage(web_page_url)
if text:
st.subheader("Extracted Text First 500 Characters:")
st.write(text[:500])
most_used_location, most_common_locations = most_frequent_locations(text)
st.subheader("Most Frequent Location")
st.write(most_used_location)
if images:
selected_image_url = st.selectbox("Select an image to predict location:", images)
if selected_image_url:
response = requests.get(selected_image_url)
if response.status_code == 200:
image = Image.open(BytesIO(response.content)).convert('RGB')
st.image(image, caption=f'Selected Image from URL: {selected_image_url}', use_column_width=True)
model = load_geoloc_model()
if model:
result = predict_location(image, model)
if result:
gps_degrees, location_query, city_geojson, processing_time = result
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
st.write(
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
if city_geojson:
display_map(city_geojson, gps_degrees)
st.write(f"Processing Time (seconds): {processing_time}")
if check_location_match(location_query, most_common_locations):
st.success(
f"The predicted location {location_name} matches one of the most frequently mentioned locations!")
if __name__ == '__main__':
main()
|