import feedparser import urllib.parse import yaml from tools.final_answer import FinalAnswerTool import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import gradio as gr from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import nltk import datetime import requests import pytz from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI nltk.download("stopwords") from nltk.corpus import stopwords @tool def convert_usd_to_eur(amount: float) -> str: """Converts a given amount in USD to NPR using real-time exchange rates. Args: amount: The amount in USD to be converted. Returns: A string with the converted amount in NPR. """ try: # API Endpoint (Replace 'YOUR-API-KEY' with your actual key) url = "https://v6.exchangerate-api.com/v6/a0a73cc16fef27d4a2c1fd40/latest/USD" # Fetch data from the exchange rate API response = requests.get(url) data = response.json() # Check if the API response contains the exchange rate if "conversion_rates" not in data or "NPR" not in data["conversion_rates"]: return "Error: Unable to fetch exchange rate." # Extract USD to EUR exchange rate exchange_rate = data["conversion_rates"]["NPR"] # Convert USD to EUR converted_amount = amount * exchange_rate return f"{amount} USD is equivalent to {converted_amount:.2f} NPR" except Exception as e: return f"Error fetching exchange rate: {str(e)}" @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" final_answer = FinalAnswerTool() # AI Model model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct', custom_role_conversions=None, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) # Load prompt templates with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) # Create the AI Agent agent = CodeAgent( model=model, tools=[final_answer,convert_usd_to_eur], # Add your tools here max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name="CurrencyConverterAgent", description="An AI agent that convert USD to NPR using real-time exchange rates.", prompt_templates=prompt_templates ) # Create Gradio UI with gr.Blocks() as demo: gr.Markdown("# 💱 Exchange Rate Converter") # Textbox for user input (amount in USD) amount_input = gr.Number(label="Enter Amount in USD", value=1, precision=2) # Output display for the converted value output_display = gr.Markdown() # Button to trigger conversion convert_button = gr.Button("🔄 Convert to NPR") # Function call when button is clicked convert_button.click(convert_usd_to_eur, inputs=[amount_input], outputs=[output_display]) print("DEBUG: Gradio UI is running. Waiting for user input...") # Launch the UI demo.launch()